Properties

Label 4-160e2-1.1-c1e2-0-21
Degree $4$
Conductor $25600$
Sign $-1$
Analytic cond. $1.63227$
Root an. cond. $1.13031$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 8·11-s + 4·17-s − 8·19-s + 25-s − 12·41-s + 16·43-s + 2·49-s + 8·59-s − 16·67-s − 12·73-s + 27·81-s + 32·83-s − 12·89-s − 28·97-s + 48·99-s + 36·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2·9-s − 2.41·11-s + 0.970·17-s − 1.83·19-s + 1/5·25-s − 1.87·41-s + 2.43·43-s + 2/7·49-s + 1.04·59-s − 1.95·67-s − 1.40·73-s + 3·81-s + 3.51·83-s − 1.27·89-s − 2.84·97-s + 4.82·99-s + 3.38·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(25600\)    =    \(2^{10} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1.63227\)
Root analytic conductor: \(1.13031\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 25600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39655063289957855259191225662, −10.12246838996141367241613997715, −9.206637608661514184739644068270, −8.521590142691914902934262227672, −8.421702762202697929017375581976, −7.75327442992794184642667314086, −7.28963827504896405934712065825, −6.22671236180701133336548488807, −5.84906736542976130410760055690, −5.28966562607622137666656232279, −4.76905661119552301505559653794, −3.64413717916439174649981742998, −2.75667504176180688667939525456, −2.39961978181641342090490014624, 0, 2.39961978181641342090490014624, 2.75667504176180688667939525456, 3.64413717916439174649981742998, 4.76905661119552301505559653794, 5.28966562607622137666656232279, 5.84906736542976130410760055690, 6.22671236180701133336548488807, 7.28963827504896405934712065825, 7.75327442992794184642667314086, 8.421702762202697929017375581976, 8.521590142691914902934262227672, 9.206637608661514184739644068270, 10.12246838996141367241613997715, 10.39655063289957855259191225662

Graph of the $Z$-function along the critical line