Properties

Label 4-160e2-1.1-c1e2-0-17
Degree $4$
Conductor $25600$
Sign $-1$
Analytic cond. $1.63227$
Root an. cond. $1.13031$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 6·9-s − 25-s − 20·29-s + 20·41-s + 12·45-s − 14·49-s − 20·61-s + 27·81-s + 20·89-s − 4·101-s + 12·109-s − 22·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 40·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 0.894·5-s − 2·9-s − 1/5·25-s − 3.71·29-s + 3.12·41-s + 1.78·45-s − 2·49-s − 2.56·61-s + 3·81-s + 2.11·89-s − 0.398·101-s + 1.14·109-s − 2·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(25600\)    =    \(2^{10} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1.63227\)
Root analytic conductor: \(1.13031\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{25600} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 25600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.84453522425202397161354104633, −9.617316516935557446365175892726, −9.206579341791145473157585005601, −8.955386231165229198073332132052, −8.025782606763976976877695514876, −7.77199473906097062385997282225, −7.38383189330491254934984805094, −6.27997548582365804353754428543, −5.87146418848833687506982135026, −5.37327377173791634385808352079, −4.46989807490289628768060263585, −3.67478222653086463350186782835, −3.13241440937412885242101141742, −2.12458086750050120053975349819, 0, 2.12458086750050120053975349819, 3.13241440937412885242101141742, 3.67478222653086463350186782835, 4.46989807490289628768060263585, 5.37327377173791634385808352079, 5.87146418848833687506982135026, 6.27997548582365804353754428543, 7.38383189330491254934984805094, 7.77199473906097062385997282225, 8.025782606763976976877695514876, 8.955386231165229198073332132052, 9.206579341791145473157585005601, 9.617316516935557446365175892726, 10.84453522425202397161354104633

Graph of the $Z$-function along the critical line