Properties

Label 4-15e4-1.1-c4e2-0-0
Degree $4$
Conductor $50625$
Sign $1$
Analytic cond. $540.945$
Root an. cond. $4.82267$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·2-s + 50·4-s − 80·7-s + 160·8-s − 200·11-s − 410·13-s − 800·14-s + 444·16-s − 470·17-s − 2.00e3·22-s − 680·23-s − 4.10e3·26-s − 4.00e3·28-s + 856·31-s + 1.88e3·32-s − 4.70e3·34-s + 1.51e3·37-s + 1.90e3·41-s + 2.44e3·43-s − 1.00e4·44-s − 6.80e3·46-s + 640·47-s + 3.20e3·49-s − 2.05e4·52-s − 1.01e3·53-s − 1.28e4·56-s − 7.61e3·61-s + ⋯
L(s)  = 1  + 5/2·2-s + 25/8·4-s − 1.63·7-s + 5/2·8-s − 1.65·11-s − 2.42·13-s − 4.08·14-s + 1.73·16-s − 1.62·17-s − 4.13·22-s − 1.28·23-s − 6.06·26-s − 5.10·28-s + 0.890·31-s + 1.83·32-s − 4.06·34-s + 1.10·37-s + 1.13·41-s + 1.31·43-s − 5.16·44-s − 3.21·46-s + 0.289·47-s + 1.33·49-s − 7.58·52-s − 0.359·53-s − 4.08·56-s − 2.04·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(50625\)    =    \(3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(540.945\)
Root analytic conductor: \(4.82267\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 50625,\ (\ :2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.333682973\)
\(L(\frac12)\) \(\approx\) \(1.333682973\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^2$ \( 1 - 5 p T + 25 p T^{2} - 5 p^{5} T^{3} + p^{8} T^{4} \)
7$C_2^2$ \( 1 + 80 T + 3200 T^{2} + 80 p^{4} T^{3} + p^{8} T^{4} \)
11$C_2$ \( ( 1 + 100 T + p^{4} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 410 T + 84050 T^{2} + 410 p^{4} T^{3} + p^{8} T^{4} \)
17$C_2^2$ \( 1 + 470 T + 110450 T^{2} + 470 p^{4} T^{3} + p^{8} T^{4} \)
19$C_2^2$ \( 1 - 255458 T^{2} + p^{8} T^{4} \)
23$C_2^2$ \( 1 + 680 T + 231200 T^{2} + 680 p^{4} T^{3} + p^{8} T^{4} \)
29$C_2^2$ \( 1 - 1212062 T^{2} + p^{8} T^{4} \)
31$C_2$ \( ( 1 - 428 T + p^{4} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 1510 T + 1140050 T^{2} - 1510 p^{4} T^{3} + p^{8} T^{4} \)
41$C_2$ \( ( 1 - 950 T + p^{4} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 2440 T + 2976800 T^{2} - 2440 p^{4} T^{3} + p^{8} T^{4} \)
47$C_2^2$ \( 1 - 640 T + 204800 T^{2} - 640 p^{4} T^{3} + p^{8} T^{4} \)
53$C_2^2$ \( 1 + 1010 T + 510050 T^{2} + 1010 p^{4} T^{3} + p^{8} T^{4} \)
59$C_2^2$ \( 1 + 15455278 T^{2} + p^{8} T^{4} \)
61$C_2$ \( ( 1 + 3808 T + p^{4} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 680 T + 231200 T^{2} + 680 p^{4} T^{3} + p^{8} T^{4} \)
71$C_2$ \( ( 1 + 3400 T + p^{4} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 830 T + 344450 T^{2} + 830 p^{4} T^{3} + p^{8} T^{4} \)
79$C_2^2$ \( 1 - 32580338 T^{2} + p^{8} T^{4} \)
83$C_2^2$ \( 1 - 1360 T + 924800 T^{2} - 1360 p^{4} T^{3} + p^{8} T^{4} \)
89$C_2^2$ \( 1 - 120421982 T^{2} + p^{8} T^{4} \)
97$C_2^2$ \( 1 + 3230 T + 5216450 T^{2} + 3230 p^{4} T^{3} + p^{8} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55421471218701869351066010068, −11.69213355904975717987345693736, −11.06389114268157560372897216401, −10.26974151151785631110932435666, −10.23430204421217441767462945683, −9.487072320517781640050936444603, −9.119588414941252156007962277407, −7.982799949614261600375029719650, −7.60390544468379299004763625416, −7.10114394777268596358748759672, −6.26406391894852383770534352395, −6.13959574203618738266371137518, −5.43413550648884262308046698042, −4.89533719470764430401358474290, −4.35928677832489144257749067065, −4.08933322307680087666755610289, −2.92995721537934280711402688583, −2.72800090046431820289679764458, −2.31446904081383294403819208594, −0.23231090340722660852265594036, 0.23231090340722660852265594036, 2.31446904081383294403819208594, 2.72800090046431820289679764458, 2.92995721537934280711402688583, 4.08933322307680087666755610289, 4.35928677832489144257749067065, 4.89533719470764430401358474290, 5.43413550648884262308046698042, 6.13959574203618738266371137518, 6.26406391894852383770534352395, 7.10114394777268596358748759672, 7.60390544468379299004763625416, 7.982799949614261600375029719650, 9.119588414941252156007962277407, 9.487072320517781640050936444603, 10.23430204421217441767462945683, 10.26974151151785631110932435666, 11.06389114268157560372897216401, 11.69213355904975717987345693736, 12.55421471218701869351066010068

Graph of the $Z$-function along the critical line