| L(s) = 1 | + 2-s − 2·4-s − 2·7-s − 3·8-s − 4·11-s + 2·13-s − 2·14-s + 16-s − 4·17-s − 4·22-s + 8·23-s + 2·26-s + 4·28-s − 10·29-s − 6·31-s + 2·32-s − 4·34-s − 6·37-s − 14·41-s − 8·43-s + 8·44-s + 8·46-s − 4·47-s + 3·49-s − 4·52-s + 8·53-s + 6·56-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 4-s − 0.755·7-s − 1.06·8-s − 1.20·11-s + 0.554·13-s − 0.534·14-s + 1/4·16-s − 0.970·17-s − 0.852·22-s + 1.66·23-s + 0.392·26-s + 0.755·28-s − 1.85·29-s − 1.07·31-s + 0.353·32-s − 0.685·34-s − 0.986·37-s − 2.18·41-s − 1.21·43-s + 1.20·44-s + 1.17·46-s − 0.583·47-s + 3/7·49-s − 0.554·52-s + 1.09·53-s + 0.801·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2480625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2480625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.016674763939395922533721064260, −9.015818767480641590494540269519, −8.414233578723368141617527311173, −8.283868080415678386542766332755, −7.53148923264926700975358271651, −7.15581737363023139572388353792, −6.75009883347375055028335954907, −6.44572772153427345416446092618, −5.66712829094775006233928476008, −5.42538953373525037613747107251, −5.04280082945156508818286961776, −4.84122488701842089366980507762, −3.96703907466446787406158731692, −3.83932341101615808283304805012, −3.22755375148447618726290811510, −2.93410291197492932117551952451, −2.09151690798107021125714979894, −1.44631677378036851450710791691, 0, 0,
1.44631677378036851450710791691, 2.09151690798107021125714979894, 2.93410291197492932117551952451, 3.22755375148447618726290811510, 3.83932341101615808283304805012, 3.96703907466446787406158731692, 4.84122488701842089366980507762, 5.04280082945156508818286961776, 5.42538953373525037613747107251, 5.66712829094775006233928476008, 6.44572772153427345416446092618, 6.75009883347375055028335954907, 7.15581737363023139572388353792, 7.53148923264926700975358271651, 8.283868080415678386542766332755, 8.414233578723368141617527311173, 9.015818767480641590494540269519, 9.016674763939395922533721064260