Properties

Label 4-156e2-1.1-c0e2-0-0
Degree $4$
Conductor $24336$
Sign $1$
Analytic cond. $0.00606126$
Root an. cond. $0.279023$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s − 13-s − 2·19-s − 21-s + 2·25-s + 27-s − 2·31-s − 2·37-s + 39-s + 43-s + 49-s + 2·57-s + 61-s + 67-s − 2·73-s − 2·75-s − 2·79-s − 81-s − 91-s + 2·93-s + 97-s − 2·103-s − 2·109-s + 2·111-s − 121-s + 127-s + ⋯
L(s)  = 1  − 3-s + 7-s − 13-s − 2·19-s − 21-s + 2·25-s + 27-s − 2·31-s − 2·37-s + 39-s + 43-s + 49-s + 2·57-s + 61-s + 67-s − 2·73-s − 2·75-s − 2·79-s − 81-s − 91-s + 2·93-s + 97-s − 2·103-s − 2·109-s + 2·111-s − 121-s + 127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(24336\)    =    \(2^{4} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.00606126\)
Root analytic conductor: \(0.279023\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 24336,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3304947556\)
\(L(\frac12)\) \(\approx\) \(0.3304947556\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T + T^{2} \)
13$C_2$ \( 1 + T + T^{2} \)
good5$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 + T + T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 + T + T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13712256832366131695424890221, −12.87467162212949865026756229537, −12.19828706702413409649508990299, −12.16223898308493711616487105926, −11.21618870351214128473596623863, −11.07231596751651044830586872506, −10.42865324778073088288378406500, −10.34906402372767019976987561544, −9.223432634792648971063271686512, −8.761415698778100303896616633042, −8.426320178916794271269645742399, −7.61222166988859049414115298574, −6.82635072436709119164717233769, −6.78205128267635501739595218871, −5.53519951937327730915506033297, −5.45461149728077424722847653941, −4.64419865390129387614011547920, −4.12196296708099721647063286021, −2.86001860257039679398210868800, −1.85492671042857562741002517517, 1.85492671042857562741002517517, 2.86001860257039679398210868800, 4.12196296708099721647063286021, 4.64419865390129387614011547920, 5.45461149728077424722847653941, 5.53519951937327730915506033297, 6.78205128267635501739595218871, 6.82635072436709119164717233769, 7.61222166988859049414115298574, 8.426320178916794271269645742399, 8.761415698778100303896616633042, 9.223432634792648971063271686512, 10.34906402372767019976987561544, 10.42865324778073088288378406500, 11.07231596751651044830586872506, 11.21618870351214128473596623863, 12.16223898308493711616487105926, 12.19828706702413409649508990299, 12.87467162212949865026756229537, 13.13712256832366131695424890221

Graph of the $Z$-function along the critical line