Properties

Label 4-156800-1.1-c1e2-0-43
Degree $4$
Conductor $156800$
Sign $-1$
Analytic cond. $9.99770$
Root an. cond. $1.77817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·7-s + 8-s − 2·9-s − 3·14-s + 16-s − 2·17-s − 2·18-s − 4·23-s + 25-s − 3·28-s − 12·31-s + 32-s − 2·34-s − 2·36-s + 4·41-s − 4·46-s + 2·47-s + 2·49-s + 50-s − 3·56-s − 12·62-s + 6·63-s + 64-s − 2·68-s − 7·71-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.13·7-s + 0.353·8-s − 2/3·9-s − 0.801·14-s + 1/4·16-s − 0.485·17-s − 0.471·18-s − 0.834·23-s + 1/5·25-s − 0.566·28-s − 2.15·31-s + 0.176·32-s − 0.342·34-s − 1/3·36-s + 0.624·41-s − 0.589·46-s + 0.291·47-s + 2/7·49-s + 0.141·50-s − 0.400·56-s − 1.52·62-s + 0.755·63-s + 1/8·64-s − 0.242·68-s − 0.830·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(156800\)    =    \(2^{7} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(9.99770\)
Root analytic conductor: \(1.77817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 156800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + 3 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.887941105872476366072573708727, −8.787633502628813252101191603226, −7.83159636296615772660520701245, −7.59847424584424245976938225648, −6.79450541688216545276976395983, −6.62550670548588926941061615798, −5.85881558798639804438121874024, −5.64074499004200893628060864908, −5.03674051889363540218177633601, −4.10862632850436663973882287719, −3.88581998433598041695051543132, −3.05314363152948468440858942308, −2.62009072778936741348427316055, −1.69170566717355238264052962835, 0, 1.69170566717355238264052962835, 2.62009072778936741348427316055, 3.05314363152948468440858942308, 3.88581998433598041695051543132, 4.10862632850436663973882287719, 5.03674051889363540218177633601, 5.64074499004200893628060864908, 5.85881558798639804438121874024, 6.62550670548588926941061615798, 6.79450541688216545276976395983, 7.59847424584424245976938225648, 7.83159636296615772660520701245, 8.787633502628813252101191603226, 8.887941105872476366072573708727

Graph of the $Z$-function along the critical line