Properties

Label 4-156800-1.1-c1e2-0-42
Degree $4$
Conductor $156800$
Sign $-1$
Analytic cond. $9.99770$
Root an. cond. $1.77817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·7-s + 8-s − 2·9-s − 3·14-s + 16-s − 11·17-s − 2·18-s + 11·23-s + 25-s − 3·28-s + 6·31-s + 32-s − 11·34-s − 2·36-s − 17·41-s + 11·46-s − 16·47-s + 2·49-s + 50-s − 3·56-s + 6·62-s + 6·63-s + 64-s − 11·68-s − 13·71-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.13·7-s + 0.353·8-s − 2/3·9-s − 0.801·14-s + 1/4·16-s − 2.66·17-s − 0.471·18-s + 2.29·23-s + 1/5·25-s − 0.566·28-s + 1.07·31-s + 0.176·32-s − 1.88·34-s − 1/3·36-s − 2.65·41-s + 1.62·46-s − 2.33·47-s + 2/7·49-s + 0.141·50-s − 0.400·56-s + 0.762·62-s + 0.755·63-s + 1/8·64-s − 1.33·68-s − 1.54·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(156800\)    =    \(2^{7} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(9.99770\)
Root analytic conductor: \(1.77817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 156800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + 3 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - T + p T^{2} ) \)
37$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 126 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.927813633752179218126680210825, −8.627435141432831789673869029474, −8.210628309357274172716467685518, −7.24937595111234950787191519988, −6.85088256909581415242634775790, −6.53188993190622290430180289888, −6.24556395238742447064275332072, −5.38795437512056532874555005533, −4.82214958135051684697679126838, −4.54938958466510561165188561616, −3.64011646744725010470789894465, −2.99306507198769018152842120753, −2.72987143554639332798675974849, −1.66855124516115900754616347362, 0, 1.66855124516115900754616347362, 2.72987143554639332798675974849, 2.99306507198769018152842120753, 3.64011646744725010470789894465, 4.54938958466510561165188561616, 4.82214958135051684697679126838, 5.38795437512056532874555005533, 6.24556395238742447064275332072, 6.53188993190622290430180289888, 6.85088256909581415242634775790, 7.24937595111234950787191519988, 8.210628309357274172716467685518, 8.627435141432831789673869029474, 8.927813633752179218126680210825

Graph of the $Z$-function along the critical line