Properties

Label 4-156800-1.1-c1e2-0-29
Degree $4$
Conductor $156800$
Sign $-1$
Analytic cond. $9.99770$
Root an. cond. $1.77817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s + 2·9-s − 2·11-s − 16-s − 2·18-s + 2·22-s − 8·23-s + 25-s − 4·29-s − 5·32-s − 2·36-s + 4·37-s + 2·43-s + 2·44-s + 8·46-s − 7·49-s − 50-s − 4·53-s + 4·58-s + 7·64-s − 2·67-s − 12·71-s + 6·72-s − 4·74-s + 8·79-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s + 2/3·9-s − 0.603·11-s − 1/4·16-s − 0.471·18-s + 0.426·22-s − 1.66·23-s + 1/5·25-s − 0.742·29-s − 0.883·32-s − 1/3·36-s + 0.657·37-s + 0.304·43-s + 0.301·44-s + 1.17·46-s − 49-s − 0.141·50-s − 0.549·53-s + 0.525·58-s + 7/8·64-s − 0.244·67-s − 1.42·71-s + 0.707·72-s − 0.464·74-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(156800\)    =    \(2^{7} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(9.99770\)
Root analytic conductor: \(1.77817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 156800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.055561680211748766084205841291, −8.543241551126492707286786354706, −8.039021793823657532431972491689, −7.63546022773226113388266796515, −7.39617678033004991975110680715, −6.57301558387128420006927440372, −6.11954490427457680165669328554, −5.41286308799244061524984199768, −4.96236062001387682516756401784, −4.21578467950668468003676949716, −3.97503517295971009107398012721, −3.04200525160127382910160590154, −2.11672424223854521329905169632, −1.36169243264703080367072142361, 0, 1.36169243264703080367072142361, 2.11672424223854521329905169632, 3.04200525160127382910160590154, 3.97503517295971009107398012721, 4.21578467950668468003676949716, 4.96236062001387682516756401784, 5.41286308799244061524984199768, 6.11954490427457680165669328554, 6.57301558387128420006927440372, 7.39617678033004991975110680715, 7.63546022773226113388266796515, 8.039021793823657532431972491689, 8.543241551126492707286786354706, 9.055561680211748766084205841291

Graph of the $Z$-function along the critical line