Properties

Label 4-156800-1.1-c1e2-0-21
Degree $4$
Conductor $156800$
Sign $1$
Analytic cond. $9.99770$
Root an. cond. $1.77817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 5·9-s + 14-s + 16-s + 5·18-s + 9·23-s − 25-s + 28-s − 6·31-s + 32-s + 5·36-s − 3·41-s + 9·46-s − 6·49-s − 50-s + 56-s − 6·62-s + 5·63-s + 64-s + 5·72-s − 12·73-s + 20·79-s + 16·81-s − 3·82-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 5/3·9-s + 0.267·14-s + 1/4·16-s + 1.17·18-s + 1.87·23-s − 1/5·25-s + 0.188·28-s − 1.07·31-s + 0.176·32-s + 5/6·36-s − 0.468·41-s + 1.32·46-s − 6/7·49-s − 0.141·50-s + 0.133·56-s − 0.762·62-s + 0.629·63-s + 1/8·64-s + 0.589·72-s − 1.40·73-s + 2.25·79-s + 16/9·81-s − 0.331·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(156800\)    =    \(2^{7} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(9.99770\)
Root analytic conductor: \(1.77817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 156800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.178889923\)
\(L(\frac12)\) \(\approx\) \(3.178889923\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 - T + p T^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2^2$ \( 1 + 43 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 83 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 55 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 59 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 71 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 9 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.258916082147760122973227186270, −8.855987333701881029367042847493, −8.182076831691115753107010144026, −7.60521586312734445037125278111, −7.29065931940753992156447321196, −6.72530231073670518644013583212, −6.50276811898959881094345167923, −5.50158182534795143028508200978, −5.23502964567619810803529997303, −4.57008330055734581911530143534, −4.18660809516532812552822809888, −3.51351867181272689731806603363, −2.85873554915655646962545333048, −1.87927809084846638710062448750, −1.25273099102646431642101040776, 1.25273099102646431642101040776, 1.87927809084846638710062448750, 2.85873554915655646962545333048, 3.51351867181272689731806603363, 4.18660809516532812552822809888, 4.57008330055734581911530143534, 5.23502964567619810803529997303, 5.50158182534795143028508200978, 6.50276811898959881094345167923, 6.72530231073670518644013583212, 7.29065931940753992156447321196, 7.60521586312734445037125278111, 8.182076831691115753107010144026, 8.855987333701881029367042847493, 9.258916082147760122973227186270

Graph of the $Z$-function along the critical line