Properties

Label 4-156800-1.1-c1e2-0-2
Degree $4$
Conductor $156800$
Sign $1$
Analytic cond. $9.99770$
Root an. cond. $1.77817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4·5-s − 4·7-s − 8-s − 2·9-s + 4·10-s + 4·11-s + 10·13-s + 4·14-s + 16-s + 2·18-s − 4·20-s − 4·22-s + 11·25-s − 10·26-s − 4·28-s − 16·31-s − 32-s + 16·35-s − 2·36-s + 4·40-s + 4·44-s + 8·45-s + 9·49-s − 11·50-s + 10·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.78·5-s − 1.51·7-s − 0.353·8-s − 2/3·9-s + 1.26·10-s + 1.20·11-s + 2.77·13-s + 1.06·14-s + 1/4·16-s + 0.471·18-s − 0.894·20-s − 0.852·22-s + 11/5·25-s − 1.96·26-s − 0.755·28-s − 2.87·31-s − 0.176·32-s + 2.70·35-s − 1/3·36-s + 0.632·40-s + 0.603·44-s + 1.19·45-s + 9/7·49-s − 1.55·50-s + 1.38·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(156800\)    =    \(2^{7} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(9.99770\)
Root analytic conductor: \(1.77817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 156800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5783504312\)
\(L(\frac12)\) \(\approx\) \(0.5783504312\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.025694293612620508698369601370, −8.775869917029675650777173279152, −8.542899990789323607745426433184, −7.84567693863861201615669999618, −7.34632989273407511334351307479, −6.88020909301788921798556576454, −6.37804844909400536852667019536, −6.01179633321282772578481474537, −5.46643161204975463040257635687, −4.25705032924395433442249010201, −3.81419986888863923682638475518, −3.41882772768279606162894089044, −3.13112984015444259143376519045, −1.64424561543330803519132530159, −0.58736775770773719122505341873, 0.58736775770773719122505341873, 1.64424561543330803519132530159, 3.13112984015444259143376519045, 3.41882772768279606162894089044, 3.81419986888863923682638475518, 4.25705032924395433442249010201, 5.46643161204975463040257635687, 6.01179633321282772578481474537, 6.37804844909400536852667019536, 6.88020909301788921798556576454, 7.34632989273407511334351307479, 7.84567693863861201615669999618, 8.542899990789323607745426433184, 8.775869917029675650777173279152, 9.025694293612620508698369601370

Graph of the $Z$-function along the critical line