Properties

Label 4-156800-1.1-c1e2-0-18
Degree $4$
Conductor $156800$
Sign $1$
Analytic cond. $9.99770$
Root an. cond. $1.77817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 2·9-s + 14-s + 16-s + 3·17-s + 2·18-s + 9·23-s − 25-s + 28-s + 32-s + 3·34-s + 2·36-s − 3·41-s + 9·46-s − 12·47-s − 6·49-s − 50-s + 56-s + 2·63-s + 64-s + 3·68-s + 9·71-s + 2·72-s + 9·73-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 2/3·9-s + 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.471·18-s + 1.87·23-s − 1/5·25-s + 0.188·28-s + 0.176·32-s + 0.514·34-s + 1/3·36-s − 0.468·41-s + 1.32·46-s − 1.75·47-s − 6/7·49-s − 0.141·50-s + 0.133·56-s + 0.251·63-s + 1/8·64-s + 0.363·68-s + 1.06·71-s + 0.235·72-s + 1.05·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(156800\)    =    \(2^{7} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(9.99770\)
Root analytic conductor: \(1.77817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 156800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.001952559\)
\(L(\frac12)\) \(\approx\) \(3.001952559\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 - T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
19$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 56 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 88 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 64 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.369741822142111846136099199793, −8.720005054664145448969887033337, −8.177826745570557538704907472983, −7.76944629182084405721844892649, −7.25870392943920970674182113545, −6.59057460290633943192451225759, −6.54836688164540199503701943799, −5.49791478224113620916615669561, −5.23164870424698922283802066166, −4.70159077081551748031181823455, −4.12421419119836467199993872110, −3.38041189507005508798737873132, −2.95223702574570941693060489476, −1.94340548227415674373630939018, −1.17614541726880996836136951476, 1.17614541726880996836136951476, 1.94340548227415674373630939018, 2.95223702574570941693060489476, 3.38041189507005508798737873132, 4.12421419119836467199993872110, 4.70159077081551748031181823455, 5.23164870424698922283802066166, 5.49791478224113620916615669561, 6.54836688164540199503701943799, 6.59057460290633943192451225759, 7.25870392943920970674182113545, 7.76944629182084405721844892649, 8.177826745570557538704907472983, 8.720005054664145448969887033337, 9.369741822142111846136099199793

Graph of the $Z$-function along the critical line