Properties

Label 4-1560e2-1.1-c1e2-0-19
Degree $4$
Conductor $2433600$
Sign $1$
Analytic cond. $155.168$
Root an. cond. $3.52939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s − 6·13-s − 12·17-s − 25-s − 4·27-s + 4·29-s + 12·39-s + 8·43-s + 10·49-s + 24·51-s − 28·53-s − 12·61-s + 2·75-s − 32·79-s + 5·81-s − 8·87-s − 36·101-s − 16·103-s − 16·107-s − 12·113-s − 18·117-s + 22·121-s + 127-s − 16·129-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s − 1.66·13-s − 2.91·17-s − 1/5·25-s − 0.769·27-s + 0.742·29-s + 1.92·39-s + 1.21·43-s + 10/7·49-s + 3.36·51-s − 3.84·53-s − 1.53·61-s + 0.230·75-s − 3.60·79-s + 5/9·81-s − 0.857·87-s − 3.58·101-s − 1.57·103-s − 1.54·107-s − 1.12·113-s − 1.66·117-s + 2·121-s + 0.0887·127-s − 1.40·129-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2433600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2433600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2433600\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(155.168\)
Root analytic conductor: \(3.52939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2433600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_2$ \( 1 + T^{2} \)
13$C_2$ \( 1 + 6 T + p T^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 146 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.232748252366323224155688346354, −9.044414498610368811653042126421, −8.371822554715386064253988057727, −8.090611164197294015974882354072, −7.32504657139876138557960073336, −7.30006299249593301398255106866, −6.63565682695802801519112379455, −6.57420374467357792986395884776, −5.94134093902010745882085885364, −5.62328757595858029594718124014, −4.92815088388699293508799438723, −4.72213467900278094244266697734, −4.22746920114492678382378393552, −4.11752299861170025040273496022, −2.80985517862297669190151658510, −2.76494825941652098652757009675, −1.96531439327367176579886998544, −1.36860532639644266450366422905, 0, 0, 1.36860532639644266450366422905, 1.96531439327367176579886998544, 2.76494825941652098652757009675, 2.80985517862297669190151658510, 4.11752299861170025040273496022, 4.22746920114492678382378393552, 4.72213467900278094244266697734, 4.92815088388699293508799438723, 5.62328757595858029594718124014, 5.94134093902010745882085885364, 6.57420374467357792986395884776, 6.63565682695802801519112379455, 7.30006299249593301398255106866, 7.32504657139876138557960073336, 8.090611164197294015974882354072, 8.371822554715386064253988057727, 9.044414498610368811653042126421, 9.232748252366323224155688346354

Graph of the $Z$-function along the critical line