Properties

Label 4-1450e2-1.1-c1e2-0-20
Degree $4$
Conductor $2102500$
Sign $1$
Analytic cond. $134.057$
Root an. cond. $3.40269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·9-s − 12·11-s + 16-s − 4·19-s + 2·29-s − 14·31-s − 2·36-s − 24·41-s + 12·44-s + 10·49-s + 18·59-s − 2·61-s − 64-s − 24·71-s + 4·76-s − 16·79-s − 5·81-s + 12·89-s − 24·99-s + 6·101-s + 8·109-s − 2·116-s + 86·121-s + 14·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s + 2/3·9-s − 3.61·11-s + 1/4·16-s − 0.917·19-s + 0.371·29-s − 2.51·31-s − 1/3·36-s − 3.74·41-s + 1.80·44-s + 10/7·49-s + 2.34·59-s − 0.256·61-s − 1/8·64-s − 2.84·71-s + 0.458·76-s − 1.80·79-s − 5/9·81-s + 1.27·89-s − 2.41·99-s + 0.597·101-s + 0.766·109-s − 0.185·116-s + 7.81·121-s + 1.25·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2102500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2102500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2102500\)    =    \(2^{2} \cdot 5^{4} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(134.057\)
Root analytic conductor: \(3.40269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2102500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
29$C_1$ \( ( 1 - T )^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 133 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 178 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.227711834250440085016337198682, −8.748367034588930178138098096136, −8.601804173317114481841567989198, −8.115711287289803492281037559368, −7.73932642641320336328375962718, −7.30899608790696544734888275504, −7.10600051731738631577252129864, −6.56296677293455952721598660339, −5.68196533244516170791628641172, −5.51672628587367986842256871790, −5.29642208402497731274704941599, −4.59916385054231776570974859258, −4.50437246840661578070239812349, −3.47234528854097161946803218723, −3.40470031884530021782360939367, −2.45875730195634571050949491854, −2.27091093971533352857860902265, −1.47852189572173631258395816757, 0, 0, 1.47852189572173631258395816757, 2.27091093971533352857860902265, 2.45875730195634571050949491854, 3.40470031884530021782360939367, 3.47234528854097161946803218723, 4.50437246840661578070239812349, 4.59916385054231776570974859258, 5.29642208402497731274704941599, 5.51672628587367986842256871790, 5.68196533244516170791628641172, 6.56296677293455952721598660339, 7.10600051731738631577252129864, 7.30899608790696544734888275504, 7.73932642641320336328375962718, 8.115711287289803492281037559368, 8.601804173317114481841567989198, 8.748367034588930178138098096136, 9.227711834250440085016337198682

Graph of the $Z$-function along the critical line