Properties

Label 4-1440e2-1.1-c3e2-0-9
Degree $4$
Conductor $2073600$
Sign $1$
Analytic cond. $7218.66$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 22·5-s + 359·25-s + 260·29-s − 460·41-s + 686·49-s − 1.66e3·61-s + 3.34e3·89-s − 1.19e3·101-s + 3.49e3·109-s − 2.66e3·121-s + 5.14e3·125-s + 127-s + 131-s + 137-s + 139-s + 5.72e3·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4.07e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 1.96·5-s + 2.87·25-s + 1.66·29-s − 1.75·41-s + 2·49-s − 3.48·61-s + 3.97·89-s − 1.17·101-s + 3.06·109-s − 2·121-s + 3.68·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 3.27·145-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s − 1.85·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2073600\)    =    \(2^{10} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(7218.66\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2073600,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.453870351\)
\(L(\frac12)\) \(\approx\) \(5.453870351\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 - 22 T + p^{3} T^{2} \)
good7$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
11$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
13$C_2$ \( ( 1 - 18 T + p^{3} T^{2} )( 1 + 18 T + p^{3} T^{2} ) \)
17$C_2$ \( ( 1 - 94 T + p^{3} T^{2} )( 1 + 94 T + p^{3} T^{2} ) \)
19$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
23$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 - 130 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 214 T + p^{3} T^{2} )( 1 + 214 T + p^{3} T^{2} ) \)
41$C_2$ \( ( 1 + 230 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
47$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
53$C_2$ \( ( 1 - 518 T + p^{3} T^{2} )( 1 + 518 T + p^{3} T^{2} ) \)
59$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 830 T + p^{3} T^{2} )^{2} \)
67$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
71$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 1098 T + p^{3} T^{2} )( 1 + 1098 T + p^{3} T^{2} ) \)
79$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
83$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
89$C_2$ \( ( 1 - 1670 T + p^{3} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 594 T + p^{3} T^{2} )( 1 + 594 T + p^{3} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.242606567388223089449599647044, −8.890496686440826494482025201192, −8.886388621346417316408307534218, −8.302487456275872774522789583781, −7.59535219715772785118389792195, −7.43918566237217857947698655768, −6.72653752534507400394146930512, −6.30165611412243143443785106388, −6.27980778682208315304315181533, −5.72393850744701288430332696177, −5.07288415754077701735273686599, −4.99673806143160264075215229592, −4.46881877869629376655316573814, −3.74614084849373086636683863282, −3.09343047945337872246443849535, −2.75461304999521101785378732319, −2.18163134816094451808498914948, −1.69151459256242394577532870725, −1.17842050602854067873942581935, −0.53515995628464418432660124075, 0.53515995628464418432660124075, 1.17842050602854067873942581935, 1.69151459256242394577532870725, 2.18163134816094451808498914948, 2.75461304999521101785378732319, 3.09343047945337872246443849535, 3.74614084849373086636683863282, 4.46881877869629376655316573814, 4.99673806143160264075215229592, 5.07288415754077701735273686599, 5.72393850744701288430332696177, 6.27980778682208315304315181533, 6.30165611412243143443785106388, 6.72653752534507400394146930512, 7.43918566237217857947698655768, 7.59535219715772785118389792195, 8.302487456275872774522789583781, 8.886388621346417316408307534218, 8.890496686440826494482025201192, 9.242606567388223089449599647044

Graph of the $Z$-function along the critical line