Properties

Label 4-1440e2-1.1-c1e2-0-45
Degree $4$
Conductor $2073600$
Sign $-1$
Analytic cond. $132.214$
Root an. cond. $3.39093$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 3·11-s − 3·17-s + 25-s + 27-s + 3·33-s − 3·41-s − 12·43-s − 2·49-s − 3·51-s + 6·59-s − 18·67-s − 13·73-s + 75-s + 81-s + 3·89-s − 15·97-s + 3·99-s + 3·107-s + 3·113-s − 3·121-s − 3·123-s + 127-s − 12·129-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.904·11-s − 0.727·17-s + 1/5·25-s + 0.192·27-s + 0.522·33-s − 0.468·41-s − 1.82·43-s − 2/7·49-s − 0.420·51-s + 0.781·59-s − 2.19·67-s − 1.52·73-s + 0.115·75-s + 1/9·81-s + 0.317·89-s − 1.52·97-s + 0.301·99-s + 0.290·107-s + 0.282·113-s − 0.272·121-s − 0.270·123-s + 0.0887·127-s − 1.05·129-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2073600\)    =    \(2^{10} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(132.214\)
Root analytic conductor: \(3.39093\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2073600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 33 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 43 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.42640598083528495735884427028, −7.13300870988558912015038793249, −6.72250537167912904301811325692, −6.35859463272807462699065386645, −5.90482393449345899968431475796, −5.33480966033838790214218804185, −4.83276037752517891929688987347, −4.36564341859125572602177028104, −4.02512598288478350875485423654, −3.35450518969791974039226032984, −3.06109551670123444543846987822, −2.35388922965370372388656964112, −1.73160637964822967975216202755, −1.23011882348805716680115620426, 0, 1.23011882348805716680115620426, 1.73160637964822967975216202755, 2.35388922965370372388656964112, 3.06109551670123444543846987822, 3.35450518969791974039226032984, 4.02512598288478350875485423654, 4.36564341859125572602177028104, 4.83276037752517891929688987347, 5.33480966033838790214218804185, 5.90482393449345899968431475796, 6.35859463272807462699065386645, 6.72250537167912904301811325692, 7.13300870988558912015038793249, 7.42640598083528495735884427028

Graph of the $Z$-function along the critical line