Properties

Label 4-1440e2-1.1-c1e2-0-42
Degree $4$
Conductor $2073600$
Sign $-1$
Analytic cond. $132.214$
Root an. cond. $3.39093$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·11-s − 4·17-s − 4·19-s − 25-s − 2·41-s − 4·43-s + 10·49-s − 10·59-s − 8·67-s − 16·73-s + 28·83-s − 14·89-s − 4·97-s − 4·107-s + 8·113-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + ⋯
L(s)  = 1  + 1.80·11-s − 0.970·17-s − 0.917·19-s − 1/5·25-s − 0.312·41-s − 0.609·43-s + 10/7·49-s − 1.30·59-s − 0.977·67-s − 1.87·73-s + 3.07·83-s − 1.48·89-s − 0.406·97-s − 0.386·107-s + 0.752·113-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6/13·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2073600\)    =    \(2^{10} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(132.214\)
Root analytic conductor: \(3.39093\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2073600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 134 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44914438753792556036216035850, −7.01073863068384294451571952559, −6.68413658156764954322691052434, −6.27323941364796062792671720054, −5.98835812383126407289603436836, −5.43990450372326157868201517325, −4.73542559052440842213307743629, −4.43187883839520157088878554729, −4.01264025738246291042191674618, −3.57835512256393744788459943732, −2.96526956530168252399686886046, −2.27319521641990201085605634506, −1.74052951984130059543731426945, −1.12197442367951752708352611124, 0, 1.12197442367951752708352611124, 1.74052951984130059543731426945, 2.27319521641990201085605634506, 2.96526956530168252399686886046, 3.57835512256393744788459943732, 4.01264025738246291042191674618, 4.43187883839520157088878554729, 4.73542559052440842213307743629, 5.43990450372326157868201517325, 5.98835812383126407289603436836, 6.27323941364796062792671720054, 6.68413658156764954322691052434, 7.01073863068384294451571952559, 7.44914438753792556036216035850

Graph of the $Z$-function along the critical line