Properties

Label 4-1440e2-1.1-c0e2-0-2
Degree $4$
Conductor $2073600$
Sign $1$
Analytic cond. $0.516463$
Root an. cond. $0.847734$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·13-s − 2·17-s + 3·25-s + 2·37-s − 4·41-s + 2·53-s + 4·65-s − 2·73-s − 4·85-s − 2·97-s + 2·113-s − 2·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 2·5-s + 2·13-s − 2·17-s + 3·25-s + 2·37-s − 4·41-s + 2·53-s + 4·65-s − 2·73-s − 4·85-s − 2·97-s + 2·113-s − 2·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2073600\)    =    \(2^{10} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.516463\)
Root analytic conductor: \(0.847734\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2073600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.731149706\)
\(L(\frac12)\) \(\approx\) \(1.731149706\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2^2$ \( 1 + T^{4} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2^2$ \( 1 + T^{4} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
41$C_1$ \( ( 1 + T )^{4} \)
43$C_2^2$ \( 1 + T^{4} \)
47$C_2^2$ \( 1 + T^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2^2$ \( 1 + T^{4} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2^2$ \( 1 + T^{4} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.750468171704631929740761426681, −9.704891110795053292508302904530, −8.958377295751747429461176436404, −8.819825118749431193299193415884, −8.379783667186916001121314056584, −8.356620180901545215757275275054, −7.22003887251406042531982736089, −7.04522918523971434102280963918, −6.50447129242142655992783928096, −6.19668732674116076915441533266, −5.99698087262425325432497810660, −5.47128246144532710457912472558, −4.91304121345842909654633126375, −4.63430813009946904863747690975, −3.87085004248764801643048610709, −3.51573612738716185265442853736, −2.59686168500782016158249376578, −2.45924310097564594588447621042, −1.57524917341929851110694534915, −1.32639248226309068763830315054, 1.32639248226309068763830315054, 1.57524917341929851110694534915, 2.45924310097564594588447621042, 2.59686168500782016158249376578, 3.51573612738716185265442853736, 3.87085004248764801643048610709, 4.63430813009946904863747690975, 4.91304121345842909654633126375, 5.47128246144532710457912472558, 5.99698087262425325432497810660, 6.19668732674116076915441533266, 6.50447129242142655992783928096, 7.04522918523971434102280963918, 7.22003887251406042531982736089, 8.356620180901545215757275275054, 8.379783667186916001121314056584, 8.819825118749431193299193415884, 8.958377295751747429461176436404, 9.704891110795053292508302904530, 9.750468171704631929740761426681

Graph of the $Z$-function along the critical line