Properties

Label 4-140e2-1.1-c6e2-0-1
Degree $4$
Conductor $19600$
Sign $1$
Analytic cond. $1037.32$
Root an. cond. $5.67517$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 26·3-s − 250·5-s + 686·7-s + 729·9-s − 2.52e3·11-s − 2.77e3·13-s − 6.50e3·15-s + 754·17-s + 1.78e4·21-s + 4.68e4·25-s + 3.92e4·27-s + 4.58e4·29-s − 6.55e4·33-s − 1.71e5·35-s − 7.21e4·39-s − 1.82e5·45-s − 1.75e5·47-s + 3.52e5·49-s + 1.96e4·51-s + 6.30e5·55-s + 5.00e5·63-s + 6.93e5·65-s − 6.04e4·71-s + 1.00e6·73-s + 1.21e6·75-s − 1.73e6·77-s + 9.30e5·79-s + ⋯
L(s)  = 1  + 0.962·3-s − 2·5-s + 2·7-s + 9-s − 1.89·11-s − 1.26·13-s − 1.92·15-s + 0.153·17-s + 1.92·21-s + 3·25-s + 1.99·27-s + 1.88·29-s − 1.82·33-s − 4·35-s − 1.21·39-s − 2·45-s − 1.69·47-s + 3·49-s + 0.147·51-s + 3.78·55-s + 2·63-s + 2.52·65-s − 0.168·71-s + 2.59·73-s + 26/9·75-s − 3.78·77-s + 1.88·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s+3)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1037.32\)
Root analytic conductor: \(5.67517\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 19600,\ (\ :3, 3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(2.485508267\)
\(L(\frac12)\) \(\approx\) \(2.485508267\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + p^{3} T )^{2} \)
7$C_1$ \( ( 1 - p^{3} T )^{2} \)
good3$C_2^2$ \( 1 - 26 T - 53 T^{2} - 26 p^{6} T^{3} + p^{12} T^{4} \)
11$C_2^2$ \( 1 + 2522 T + 4588923 T^{2} + 2522 p^{6} T^{3} + p^{12} T^{4} \)
13$C_2^2$ \( 1 + 2774 T + 2868267 T^{2} + 2774 p^{6} T^{3} + p^{12} T^{4} \)
17$C_2^2$ \( 1 - 754 T - 23569053 T^{2} - 754 p^{6} T^{3} + p^{12} T^{4} \)
19$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
29$C_2^2$ \( 1 - 45862 T + 1508499723 T^{2} - 45862 p^{6} T^{3} + p^{12} T^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
47$C_2^2$ \( 1 + 175646 T + 20072301987 T^{2} + 175646 p^{6} T^{3} + p^{12} T^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
71$C_2$ \( ( 1 + 30238 T + p^{6} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 504254 T + p^{6} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 930382 T + 622523210403 T^{2} - 930382 p^{6} T^{3} + p^{12} T^{4} \)
83$C_2$ \( ( 1 + 1141306 T + p^{6} T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
97$C_2^2$ \( 1 - 897874 T - 26794285053 T^{2} - 897874 p^{6} T^{3} + p^{12} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.27250974023290203443216568510, −11.86731993842168870176901677080, −11.20816362471207635724532811854, −10.82021548314364337943440565113, −10.33091597503014912140853445577, −9.828716597512453226243906053020, −8.728649285330973306848460153327, −8.374232724014088140722784519032, −8.087850895508946410660609353779, −7.67449710350352034955685380600, −7.32265268409782504924753755544, −6.67652214332652960330933087816, −5.05263784043602835103693506163, −4.94728098407777819146661896135, −4.54323037129017165436833730927, −3.71498564895203334839690219058, −2.77626417141834891120328056919, −2.48519402973338931580020224571, −1.30390093134689117611902786935, −0.48615148914879313987868127656, 0.48615148914879313987868127656, 1.30390093134689117611902786935, 2.48519402973338931580020224571, 2.77626417141834891120328056919, 3.71498564895203334839690219058, 4.54323037129017165436833730927, 4.94728098407777819146661896135, 5.05263784043602835103693506163, 6.67652214332652960330933087816, 7.32265268409782504924753755544, 7.67449710350352034955685380600, 8.087850895508946410660609353779, 8.374232724014088140722784519032, 8.728649285330973306848460153327, 9.828716597512453226243906053020, 10.33091597503014912140853445577, 10.82021548314364337943440565113, 11.20816362471207635724532811854, 11.86731993842168870176901677080, 12.27250974023290203443216568510

Graph of the $Z$-function along the critical line