Properties

Label 4-140e2-1.1-c2e2-0-1
Degree $4$
Conductor $19600$
Sign $1$
Analytic cond. $14.5521$
Root an. cond. $1.95313$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 10·5-s − 14·7-s + 9·9-s + 13·11-s − 19·13-s + 10·15-s + 29·17-s − 14·21-s + 75·25-s + 26·27-s − 23·29-s + 13·33-s − 140·35-s − 19·39-s + 90·45-s − 31·47-s + 147·49-s + 29·51-s + 130·55-s − 126·63-s − 190·65-s + 4·71-s + 68·73-s + 75·75-s − 182·77-s + 157·79-s + ⋯
L(s)  = 1  + 1/3·3-s + 2·5-s − 2·7-s + 9-s + 1.18·11-s − 1.46·13-s + 2/3·15-s + 1.70·17-s − 2/3·21-s + 3·25-s + 0.962·27-s − 0.793·29-s + 0.393·33-s − 4·35-s − 0.487·39-s + 2·45-s − 0.659·47-s + 3·49-s + 0.568·51-s + 2.36·55-s − 2·63-s − 2.92·65-s + 4/71·71-s + 0.931·73-s + 75-s − 2.36·77-s + 1.98·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(14.5521\)
Root analytic conductor: \(1.95313\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 19600,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.595861705\)
\(L(\frac12)\) \(\approx\) \(2.595861705\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - p T )^{2} \)
7$C_1$ \( ( 1 + p T )^{2} \)
good3$C_2^2$ \( 1 - T - 8 T^{2} - p^{2} T^{3} + p^{4} T^{4} \)
11$C_2^2$ \( 1 - 13 T + 48 T^{2} - 13 p^{2} T^{3} + p^{4} T^{4} \)
13$C_2^2$ \( 1 + 19 T + 192 T^{2} + 19 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 29 T + 552 T^{2} - 29 p^{2} T^{3} + p^{4} T^{4} \)
19$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
29$C_2^2$ \( 1 + 23 T - 312 T^{2} + 23 p^{2} T^{3} + p^{4} T^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
47$C_2^2$ \( 1 + 31 T - 1248 T^{2} + 31 p^{2} T^{3} + p^{4} T^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
71$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 34 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 157 T + 18408 T^{2} - 157 p^{2} T^{3} + p^{4} T^{4} \)
83$C_2$ \( ( 1 + 86 T + p^{2} T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
97$C_2^2$ \( 1 - 149 T + 12792 T^{2} - 149 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08905915577880214898817369674, −12.63338452469970669398434337529, −12.49045629737800870693463689101, −11.97945549144279487133240824324, −10.93700501956721322053198447846, −10.12009130905570486163942832685, −9.872066313397811908722265563294, −9.851885496310535006602333189589, −9.194259120636629720128679637960, −8.886526363643839169183216869095, −7.70831380635089071256870011567, −7.03166622037096669318874469686, −6.69319261060412453216203409954, −6.14235631764396958234671568657, −5.55210843029910927898706161129, −4.85439546259380135318758172838, −3.76192328071228749097072795932, −3.06907972894607140089878949561, −2.28496982487583331243431496649, −1.19084076574701911907234701732, 1.19084076574701911907234701732, 2.28496982487583331243431496649, 3.06907972894607140089878949561, 3.76192328071228749097072795932, 4.85439546259380135318758172838, 5.55210843029910927898706161129, 6.14235631764396958234671568657, 6.69319261060412453216203409954, 7.03166622037096669318874469686, 7.70831380635089071256870011567, 8.886526363643839169183216869095, 9.194259120636629720128679637960, 9.851885496310535006602333189589, 9.872066313397811908722265563294, 10.12009130905570486163942832685, 10.93700501956721322053198447846, 11.97945549144279487133240824324, 12.49045629737800870693463689101, 12.63338452469970669398434337529, 13.08905915577880214898817369674

Graph of the $Z$-function along the critical line