Properties

Label 4-140e2-1.1-c2e2-0-0
Degree $4$
Conductor $19600$
Sign $1$
Analytic cond. $14.5521$
Root an. cond. $1.95313$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 10·5-s + 14·7-s + 9·9-s + 13·11-s + 19·13-s + 10·15-s − 29·17-s − 14·21-s + 75·25-s − 26·27-s − 23·29-s − 13·33-s − 140·35-s − 19·39-s − 90·45-s + 31·47-s + 147·49-s + 29·51-s − 130·55-s + 126·63-s − 190·65-s + 4·71-s − 68·73-s − 75·75-s + 182·77-s + 157·79-s + ⋯
L(s)  = 1  − 1/3·3-s − 2·5-s + 2·7-s + 9-s + 1.18·11-s + 1.46·13-s + 2/3·15-s − 1.70·17-s − 2/3·21-s + 3·25-s − 0.962·27-s − 0.793·29-s − 0.393·33-s − 4·35-s − 0.487·39-s − 2·45-s + 0.659·47-s + 3·49-s + 0.568·51-s − 2.36·55-s + 2·63-s − 2.92·65-s + 4/71·71-s − 0.931·73-s − 75-s + 2.36·77-s + 1.98·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(14.5521\)
Root analytic conductor: \(1.95313\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 19600,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.584123478\)
\(L(\frac12)\) \(\approx\) \(1.584123478\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + p T )^{2} \)
7$C_1$ \( ( 1 - p T )^{2} \)
good3$C_2^2$ \( 1 + T - 8 T^{2} + p^{2} T^{3} + p^{4} T^{4} \)
11$C_2^2$ \( 1 - 13 T + 48 T^{2} - 13 p^{2} T^{3} + p^{4} T^{4} \)
13$C_2^2$ \( 1 - 19 T + 192 T^{2} - 19 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 + 29 T + 552 T^{2} + 29 p^{2} T^{3} + p^{4} T^{4} \)
19$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
29$C_2^2$ \( 1 + 23 T - 312 T^{2} + 23 p^{2} T^{3} + p^{4} T^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
47$C_2^2$ \( 1 - 31 T - 1248 T^{2} - 31 p^{2} T^{3} + p^{4} T^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
71$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 34 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 157 T + 18408 T^{2} - 157 p^{2} T^{3} + p^{4} T^{4} \)
83$C_2$ \( ( 1 - 86 T + p^{2} T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
97$C_2^2$ \( 1 + 149 T + 12792 T^{2} + 149 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10363644869881241316434155471, −12.53552795893333470010720545440, −11.80538352514309094138047065429, −11.72376702428500592678735399878, −11.10300462055168991650542521779, −10.97588770808163545031307232816, −10.51670340148121430264332502484, −9.310410198818516695115555952732, −8.768975734879259907951265117097, −8.514943582867642115925451320249, −7.79022872064364671092465970319, −7.43943685147355718148005473936, −6.83472427293603917267514991460, −6.20110184789952087784648578884, −5.12229019017352242287760409680, −4.47961396660048144887428600946, −4.08883127178518451143939924670, −3.66087341456665241523076123552, −1.90785720639598481407558956583, −0.962573358583385147744273048565, 0.962573358583385147744273048565, 1.90785720639598481407558956583, 3.66087341456665241523076123552, 4.08883127178518451143939924670, 4.47961396660048144887428600946, 5.12229019017352242287760409680, 6.20110184789952087784648578884, 6.83472427293603917267514991460, 7.43943685147355718148005473936, 7.79022872064364671092465970319, 8.514943582867642115925451320249, 8.768975734879259907951265117097, 9.310410198818516695115555952732, 10.51670340148121430264332502484, 10.97588770808163545031307232816, 11.10300462055168991650542521779, 11.72376702428500592678735399878, 11.80538352514309094138047065429, 12.53552795893333470010720545440, 13.10363644869881241316434155471

Graph of the $Z$-function along the critical line