Properties

Label 4-140e2-1.1-c1e2-0-9
Degree $4$
Conductor $19600$
Sign $-1$
Analytic cond. $1.24971$
Root an. cond. $1.05731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5·9-s − 6·11-s + 4·13-s + 4·16-s + 25-s − 6·29-s − 12·31-s + 10·36-s − 8·37-s − 12·41-s − 12·43-s + 12·44-s + 12·47-s + 49-s − 8·52-s + 12·53-s − 12·59-s + 16·61-s − 8·64-s − 12·67-s + 16·73-s − 6·79-s + 16·81-s + 24·83-s + 16·97-s + 30·99-s + ⋯
L(s)  = 1  − 4-s − 5/3·9-s − 1.80·11-s + 1.10·13-s + 16-s + 1/5·25-s − 1.11·29-s − 2.15·31-s + 5/3·36-s − 1.31·37-s − 1.87·41-s − 1.82·43-s + 1.80·44-s + 1.75·47-s + 1/7·49-s − 1.10·52-s + 1.64·53-s − 1.56·59-s + 2.04·61-s − 64-s − 1.46·67-s + 1.87·73-s − 0.675·79-s + 16/9·81-s + 2.63·83-s + 1.62·97-s + 3.01·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(1.24971\)
Root analytic conductor: \(1.05731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 19600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.0761521293, −15.2725263569, −15.2025804258, −14.4884310232, −14.0962101507, −13.4088539635, −13.3483260723, −12.9185255514, −12.0267741459, −11.8074747577, −10.9005640016, −10.6732199132, −10.2617561341, −9.37517559110, −8.75360307520, −8.67949885325, −7.98094729632, −7.50080687239, −6.60075882434, −5.59805653955, −5.47907564041, −4.97734488096, −3.61689003046, −3.40261805033, −2.16340813030, 0, 2.16340813030, 3.40261805033, 3.61689003046, 4.97734488096, 5.47907564041, 5.59805653955, 6.60075882434, 7.50080687239, 7.98094729632, 8.67949885325, 8.75360307520, 9.37517559110, 10.2617561341, 10.6732199132, 10.9005640016, 11.8074747577, 12.0267741459, 12.9185255514, 13.3483260723, 13.4088539635, 14.0962101507, 14.4884310232, 15.2025804258, 15.2725263569, 16.0761521293

Graph of the $Z$-function along the critical line