Properties

Label 4-140e2-1.1-c1e2-0-8
Degree $4$
Conductor $19600$
Sign $-1$
Analytic cond. $1.24971$
Root an. cond. $1.05731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s − 2·5-s − 3·6-s + 8-s + 3·9-s − 2·10-s + 11-s − 3·12-s + 6·15-s + 16-s − 5·17-s + 3·18-s − 5·19-s − 2·20-s + 22-s − 4·23-s − 3·24-s − 25-s + 4·29-s + 6·30-s − 8·31-s + 32-s − 3·33-s − 5·34-s + 3·36-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s − 0.894·5-s − 1.22·6-s + 0.353·8-s + 9-s − 0.632·10-s + 0.301·11-s − 0.866·12-s + 1.54·15-s + 1/4·16-s − 1.21·17-s + 0.707·18-s − 1.14·19-s − 0.447·20-s + 0.213·22-s − 0.834·23-s − 0.612·24-s − 1/5·25-s + 0.742·29-s + 1.09·30-s − 1.43·31-s + 0.176·32-s − 0.522·33-s − 0.857·34-s + 1/2·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(1.24971\)
Root analytic conductor: \(1.05731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 19600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \)
11$D_{4}$ \( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
19$D_{4}$ \( 1 + 5 T + 30 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 4 T - 14 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 8 T + 38 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 2 T - 34 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$D_{4}$ \( 1 + 4 T + 62 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 2 T - 34 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 6 T + 62 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 4 T - 34 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 7 T + 30 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 2 T - 42 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - T + 88 T^{2} - p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 6 T + 14 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 17 T + 174 T^{2} + 17 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 11 T + 92 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 12 T + 150 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.8559089386, −15.8202897091, −15.0566589154, −14.7163121675, −14.1605238137, −13.4415825519, −13.0527470601, −12.4794639226, −12.0286686569, −11.6963533906, −11.2641621174, −10.8769489628, −10.4911486048, −9.75905593192, −8.92857496325, −8.35318486363, −7.71194526503, −6.90781892989, −6.56628544466, −5.91251630833, −5.50252070738, −4.55718085134, −4.30434203350, −3.40737633752, −2.05023038526, 0, 2.05023038526, 3.40737633752, 4.30434203350, 4.55718085134, 5.50252070738, 5.91251630833, 6.56628544466, 6.90781892989, 7.71194526503, 8.35318486363, 8.92857496325, 9.75905593192, 10.4911486048, 10.8769489628, 11.2641621174, 11.6963533906, 12.0286686569, 12.4794639226, 13.0527470601, 13.4415825519, 14.1605238137, 14.7163121675, 15.0566589154, 15.8202897091, 15.8559089386

Graph of the $Z$-function along the critical line