Properties

Label 4-140e2-1.1-c1e2-0-6
Degree $4$
Conductor $19600$
Sign $1$
Analytic cond. $1.24971$
Root an. cond. $1.05731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 3·9-s − 4·16-s + 6·18-s − 25-s + 2·29-s − 8·32-s + 6·36-s − 7·49-s − 2·50-s − 20·53-s + 4·58-s − 8·64-s − 14·98-s − 2·100-s − 40·106-s + 30·109-s + 16·113-s + 4·116-s − 21·121-s + 127-s + 131-s + 137-s + 139-s − 12·144-s + 149-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 9-s − 16-s + 1.41·18-s − 1/5·25-s + 0.371·29-s − 1.41·32-s + 36-s − 49-s − 0.282·50-s − 2.74·53-s + 0.525·58-s − 64-s − 1.41·98-s − 1/5·100-s − 3.88·106-s + 2.87·109-s + 1.50·113-s + 0.371·116-s − 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 144-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.24971\)
Root analytic conductor: \(1.05731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 19600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.301409224\)
\(L(\frac12)\) \(\approx\) \(2.301409224\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
5$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16082934664422888507415664885, −10.42703357898353451171232561647, −9.877191879518267225385464097371, −9.375538905149461374318659678050, −8.749867315934444980801831391315, −7.969282821348508699416415622410, −7.43451974256591676697530133038, −6.68496359825772854651235963790, −6.31780104077392117354355047996, −5.59619941150472580186581344036, −4.80025950309901808481083600396, −4.47811276515376096082407721051, −3.64223900207711112639934693945, −2.96737343451265466950866403592, −1.80569769789110742560219528774, 1.80569769789110742560219528774, 2.96737343451265466950866403592, 3.64223900207711112639934693945, 4.47811276515376096082407721051, 4.80025950309901808481083600396, 5.59619941150472580186581344036, 6.31780104077392117354355047996, 6.68496359825772854651235963790, 7.43451974256591676697530133038, 7.969282821348508699416415622410, 8.749867315934444980801831391315, 9.375538905149461374318659678050, 9.877191879518267225385464097371, 10.42703357898353451171232561647, 11.16082934664422888507415664885

Graph of the $Z$-function along the critical line