Properties

Label 4-1400e2-1.1-c1e2-0-10
Degree $4$
Conductor $1960000$
Sign $1$
Analytic cond. $124.971$
Root an. cond. $3.34350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 9-s + 8·11-s + 4·23-s + 2·29-s + 4·37-s − 12·43-s + 9·49-s + 8·53-s + 4·63-s + 8·67-s + 16·71-s − 32·77-s + 16·79-s − 8·81-s − 8·99-s + 16·107-s + 22·109-s + 4·113-s + 27·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 1.51·7-s − 1/3·9-s + 2.41·11-s + 0.834·23-s + 0.371·29-s + 0.657·37-s − 1.82·43-s + 9/7·49-s + 1.09·53-s + 0.503·63-s + 0.977·67-s + 1.89·71-s − 3.64·77-s + 1.80·79-s − 8/9·81-s − 0.804·99-s + 1.54·107-s + 2.10·109-s + 0.376·113-s + 2.45·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1960000\)    =    \(2^{6} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(124.971\)
Root analytic conductor: \(3.34350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1960000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.034964418\)
\(L(\frac12)\) \(\approx\) \(2.034964418\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 21 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 33 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 115 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68313722963231684362247249288, −7.18037030660825335804444992294, −6.76792278080776726528934411600, −6.45245502129997290332629657025, −6.32575800546953806715373001893, −5.77931717819679328828939194457, −5.12228092368792626308831320445, −4.75450575046833732417670585319, −3.98792211302815590430187104704, −3.69206353960463104183727705685, −3.39711237700794286554640589971, −2.75526219452087525683394391129, −2.12067515740541168954849734392, −1.27924561943844186654989996949, −0.64380406187411459918854376673, 0.64380406187411459918854376673, 1.27924561943844186654989996949, 2.12067515740541168954849734392, 2.75526219452087525683394391129, 3.39711237700794286554640589971, 3.69206353960463104183727705685, 3.98792211302815590430187104704, 4.75450575046833732417670585319, 5.12228092368792626308831320445, 5.77931717819679328828939194457, 6.32575800546953806715373001893, 6.45245502129997290332629657025, 6.76792278080776726528934411600, 7.18037030660825335804444992294, 7.68313722963231684362247249288

Graph of the $Z$-function along the critical line