Properties

Label 4-13e2-1.1-c3e2-0-3
Degree $4$
Conductor $169$
Sign $1$
Analytic cond. $0.588327$
Root an. cond. $0.875799$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 5·3-s − 11·4-s − 3·5-s + 5·6-s − 9·7-s − 15·8-s + 3·9-s − 3·10-s + 80·11-s − 55·12-s − 26·13-s − 9·14-s − 15·15-s + 61·16-s + 19·17-s + 3·18-s − 84·19-s + 33·20-s − 45·21-s + 80·22-s + 196·23-s − 75·24-s − 239·25-s − 26·26-s + 40·27-s + 99·28-s + ⋯
L(s)  = 1  + 0.353·2-s + 0.962·3-s − 1.37·4-s − 0.268·5-s + 0.340·6-s − 0.485·7-s − 0.662·8-s + 1/9·9-s − 0.0948·10-s + 2.19·11-s − 1.32·12-s − 0.554·13-s − 0.171·14-s − 0.258·15-s + 0.953·16-s + 0.271·17-s + 0.0392·18-s − 1.01·19-s + 0.368·20-s − 0.467·21-s + 0.775·22-s + 1.77·23-s − 0.637·24-s − 1.91·25-s − 0.196·26-s + 0.285·27-s + 0.668·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(0.588327\)
Root analytic conductor: \(0.875799\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 169,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.009426291\)
\(L(\frac12)\) \(\approx\) \(1.009426291\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13$C_1$ \( ( 1 + p T )^{2} \)
good2$D_{4}$ \( 1 - T + 3 p^{2} T^{2} - p^{3} T^{3} + p^{6} T^{4} \)
3$D_{4}$ \( 1 - 5 T + 22 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + 3 T + 248 T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 9 T + 192 T^{2} + 9 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 80 T + 3650 T^{2} - 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 19 T + 8688 T^{2} - 19 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 84 T + 11130 T^{2} + 84 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 196 T + 33326 T^{2} - 196 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 44 T + 10094 T^{2} + 44 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 86 T + 56518 T^{2} + 86 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 209 T + 112120 T^{2} - 209 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 230 T + 149010 T^{2} + 230 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 287 T + 92698 T^{2} - 287 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 435 T + 192728 T^{2} - 435 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 118 T + 297410 T^{2} + 118 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 368 T + 379266 T^{2} + 368 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 1058 T + 580378 T^{2} + 1058 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 68 T + 373930 T^{2} - 68 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 131 T + 493328 T^{2} + 131 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 456 T + 542718 T^{2} - 456 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 1008 T + 1233294 T^{2} + 1008 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1958 T + 1961238 T^{2} - 1958 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 720 T + 899726 T^{2} + 720 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 928 T + 943870 T^{2} + 928 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.60374200828868102468536634216, −19.30705881950751410189199659154, −18.77683236558196979258764124750, −17.76737342376482072933577699954, −17.04482603597956831823514602140, −16.75650718689160499623937765796, −15.24718868092760447281081961144, −14.90239701884330161535029855708, −14.05008445734507485159626055694, −13.87746652659443314443937241466, −12.85250954284156864464523605367, −12.28434038437570960343096293189, −11.26038422060788727187354048575, −9.827288916794965173808830426038, −9.046158984158336058320394800623, −8.882764193305829362779320448505, −7.53141004237313528585943938051, −6.17812286510206894290657191844, −4.48460182468764722408570928051, −3.56763813396559653157210978973, 3.56763813396559653157210978973, 4.48460182468764722408570928051, 6.17812286510206894290657191844, 7.53141004237313528585943938051, 8.882764193305829362779320448505, 9.046158984158336058320394800623, 9.827288916794965173808830426038, 11.26038422060788727187354048575, 12.28434038437570960343096293189, 12.85250954284156864464523605367, 13.87746652659443314443937241466, 14.05008445734507485159626055694, 14.90239701884330161535029855708, 15.24718868092760447281081961144, 16.75650718689160499623937765796, 17.04482603597956831823514602140, 17.76737342376482072933577699954, 18.77683236558196979258764124750, 19.30705881950751410189199659154, 19.60374200828868102468536634216

Graph of the $Z$-function along the critical line