Properties

Label 4-13e2-1.1-c3e2-0-0
Degree $4$
Conductor $169$
Sign $1$
Analytic cond. $0.588327$
Root an. cond. $0.875799$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·2-s + 7·3-s + 16·4-s − 42·6-s + 39·7-s − 24·8-s + 27·9-s − 39·11-s + 112·12-s − 26·13-s − 234·14-s + 48·16-s − 27·17-s − 162·18-s − 153·19-s + 273·21-s + 234·22-s − 57·23-s − 168·24-s + 58·25-s + 156·26-s + 224·27-s + 624·28-s + 69·29-s − 192·32-s − 273·33-s + 162·34-s + ⋯
L(s)  = 1  − 2.12·2-s + 1.34·3-s + 2·4-s − 2.85·6-s + 2.10·7-s − 1.06·8-s + 9-s − 1.06·11-s + 2.69·12-s − 0.554·13-s − 4.46·14-s + 3/4·16-s − 0.385·17-s − 2.12·18-s − 1.84·19-s + 2.83·21-s + 2.26·22-s − 0.516·23-s − 1.42·24-s + 0.463·25-s + 1.17·26-s + 1.59·27-s + 4.21·28-s + 0.441·29-s − 1.06·32-s − 1.44·33-s + 0.817·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(0.588327\)
Root analytic conductor: \(0.875799\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 169,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5121464513\)
\(L(\frac12)\) \(\approx\) \(0.5121464513\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13$C_2$ \( 1 + 2 p T + p^{3} T^{2} \)
good2$C_2^2$ \( 1 + 3 p T + 5 p^{2} T^{2} + 3 p^{4} T^{3} + p^{6} T^{4} \)
3$C_2^2$ \( 1 - 7 T + 22 T^{2} - 7 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 - 58 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 39 T + 850 T^{2} - 39 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 39 T + 1838 T^{2} + 39 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 27 T - 4184 T^{2} + 27 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 153 T + 14662 T^{2} + 153 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 57 T - 8918 T^{2} + 57 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 69 T - 19628 T^{2} - 69 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 - 54290 T^{2} + p^{6} T^{4} \)
37$C_2^2$ \( 1 + 69 T + 52240 T^{2} + 69 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2^2$ \( 1 + 681 T + 223508 T^{2} + 681 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 85 T - 72282 T^{2} - 85 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 90034 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 426 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 33 T + 205742 T^{2} + 33 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 17 T - 226692 T^{2} - 17 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 285 T + 327838 T^{2} - 285 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2^2$ \( 1 - 1011 T + 698618 T^{2} - 1011 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2^2$ \( 1 + 231166 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 1244 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 962026 T^{2} + p^{6} T^{4} \)
89$C_2^2$ \( 1 - 531 T + 798956 T^{2} - 531 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2^2$ \( 1 - 2139 T + 2437780 T^{2} - 2139 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.88636005144530613870746315734, −18.85927168084700490843340412488, −18.44175080340776231630660574013, −18.07827698741142481588090997022, −17.26214822321643194606012520434, −16.99354970851497277558510659429, −15.75822802309119482862262646720, −14.96920099474815101760947911563, −14.59910339934377349528497014381, −13.78044923184104415161506893934, −12.71056452343602839582459843870, −11.57781508819803023179857827817, −10.39776468923365132375400991003, −10.30179298841582890889348698943, −8.868693986454882017884086778155, −8.360288387817286688492718603371, −8.231085512020065232240113341638, −7.18864249379947825917987191008, −4.80198786544075143735648168099, −2.11014574367122488708249141919, 2.11014574367122488708249141919, 4.80198786544075143735648168099, 7.18864249379947825917987191008, 8.231085512020065232240113341638, 8.360288387817286688492718603371, 8.868693986454882017884086778155, 10.30179298841582890889348698943, 10.39776468923365132375400991003, 11.57781508819803023179857827817, 12.71056452343602839582459843870, 13.78044923184104415161506893934, 14.59910339934377349528497014381, 14.96920099474815101760947911563, 15.75822802309119482862262646720, 16.99354970851497277558510659429, 17.26214822321643194606012520434, 18.07827698741142481588090997022, 18.44175080340776231630660574013, 18.85927168084700490843340412488, 19.88636005144530613870746315734

Graph of the $Z$-function along the critical line