Properties

Label 4-1386e2-1.1-c1e2-0-37
Degree $4$
Conductor $1920996$
Sign $-1$
Analytic cond. $122.484$
Root an. cond. $3.32675$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 4·7-s + 4·11-s + 16-s − 2·25-s + 4·28-s − 16·29-s − 12·37-s − 16·43-s + 4·44-s + 9·49-s − 20·53-s + 64-s + 8·67-s − 24·71-s + 16·77-s + 8·79-s − 2·100-s − 16·107-s + 8·109-s + 4·112-s + 4·113-s − 16·116-s + 5·121-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.51·7-s + 1.20·11-s + 1/4·16-s − 2/5·25-s + 0.755·28-s − 2.97·29-s − 1.97·37-s − 2.43·43-s + 0.603·44-s + 9/7·49-s − 2.74·53-s + 1/8·64-s + 0.977·67-s − 2.84·71-s + 1.82·77-s + 0.900·79-s − 1/5·100-s − 1.54·107-s + 0.766·109-s + 0.377·112-s + 0.376·113-s − 1.48·116-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920996 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920996 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1920996\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(122.484\)
Root analytic conductor: \(3.32675\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1920996,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3 \( 1 \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.50137576168953687108768694563, −7.20998797023745053729444681431, −6.79853855086926084541674182690, −6.28007088881936232182159165344, −5.88973762689013006108448201245, −5.25964646621742773894548541242, −5.10529030531332236282474829425, −4.48205645016970734304911158565, −3.97123923054971891475622805047, −3.48314749553827494253882755808, −3.11620292712776161277981887353, −2.01165372244914077330477604676, −1.71668187590965789455829830277, −1.46696501363205523734355212811, 0, 1.46696501363205523734355212811, 1.71668187590965789455829830277, 2.01165372244914077330477604676, 3.11620292712776161277981887353, 3.48314749553827494253882755808, 3.97123923054971891475622805047, 4.48205645016970734304911158565, 5.10529030531332236282474829425, 5.25964646621742773894548541242, 5.88973762689013006108448201245, 6.28007088881936232182159165344, 6.79853855086926084541674182690, 7.20998797023745053729444681431, 7.50137576168953687108768694563

Graph of the $Z$-function along the critical line