Properties

Label 4-1386e2-1.1-c1e2-0-19
Degree $4$
Conductor $1920996$
Sign $-1$
Analytic cond. $122.484$
Root an. cond. $3.32675$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·7-s − 4·8-s + 4·11-s + 8·14-s + 5·16-s − 8·22-s + 6·23-s − 8·25-s − 12·28-s − 8·29-s − 6·32-s − 4·37-s + 2·43-s + 12·44-s − 12·46-s + 9·49-s + 16·50-s + 26·53-s + 16·56-s + 16·58-s + 7·64-s + 8·67-s + 2·71-s + 8·74-s − 16·77-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.51·7-s − 1.41·8-s + 1.20·11-s + 2.13·14-s + 5/4·16-s − 1.70·22-s + 1.25·23-s − 8/5·25-s − 2.26·28-s − 1.48·29-s − 1.06·32-s − 0.657·37-s + 0.304·43-s + 1.80·44-s − 1.76·46-s + 9/7·49-s + 2.26·50-s + 3.57·53-s + 2.13·56-s + 2.10·58-s + 7/8·64-s + 0.977·67-s + 0.237·71-s + 0.929·74-s − 1.82·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920996 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920996 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1920996\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(122.484\)
Root analytic conductor: \(3.32675\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1920996,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 80 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2^2$ \( 1 + 104 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.46279151861437526314386022165, −7.15761375511992423287681446444, −6.83249047217393470688211331264, −6.56263511591907701222430269084, −5.93086545754445054792998745813, −5.66203974026568150858358116795, −5.22018101456839073850602135358, −4.20496168249042371040397667236, −3.67930606619282856977205375106, −3.63066911118268614071863051332, −2.73402706483716872013713425401, −2.32420571079081891891836612602, −1.58128716775591137241953666416, −0.864265341674288841465502441553, 0, 0.864265341674288841465502441553, 1.58128716775591137241953666416, 2.32420571079081891891836612602, 2.73402706483716872013713425401, 3.63066911118268614071863051332, 3.67930606619282856977205375106, 4.20496168249042371040397667236, 5.22018101456839073850602135358, 5.66203974026568150858358116795, 5.93086545754445054792998745813, 6.56263511591907701222430269084, 6.83249047217393470688211331264, 7.15761375511992423287681446444, 7.46279151861437526314386022165

Graph of the $Z$-function along the critical line