Properties

Label 4-1377-1.1-c1e2-0-0
Degree $4$
Conductor $1377$
Sign $1$
Analytic cond. $0.0877987$
Root an. cond. $0.544342$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4-s − 3·5-s − 2·7-s + 9-s − 12-s + 13-s − 3·15-s − 3·16-s + 5·17-s + 19-s + 3·20-s − 2·21-s − 3·23-s + 5·25-s + 27-s + 2·28-s + 3·29-s + 4·31-s + 6·35-s − 36-s − 8·37-s + 39-s + 3·41-s + 43-s − 3·45-s − 6·47-s + ⋯
L(s)  = 1  + 0.577·3-s − 1/2·4-s − 1.34·5-s − 0.755·7-s + 1/3·9-s − 0.288·12-s + 0.277·13-s − 0.774·15-s − 3/4·16-s + 1.21·17-s + 0.229·19-s + 0.670·20-s − 0.436·21-s − 0.625·23-s + 25-s + 0.192·27-s + 0.377·28-s + 0.557·29-s + 0.718·31-s + 1.01·35-s − 1/6·36-s − 1.31·37-s + 0.160·39-s + 0.468·41-s + 0.152·43-s − 0.447·45-s − 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1377 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1377 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1377\)    =    \(3^{4} \cdot 17\)
Sign: $1$
Analytic conductor: \(0.0877987\)
Root analytic conductor: \(0.544342\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1377,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5167999514\)
\(L(\frac12)\) \(\approx\) \(0.5167999514\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
17$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 6 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$D_{4}$ \( 1 + 3 T - 2 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 3 T + 16 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$D_{4}$ \( 1 - T - 6 T^{2} - p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 6 T + 58 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
59$D_{4}$ \( 1 + 12 T + 82 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$D_{4}$ \( 1 + 5 T + 66 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 3 T - 2 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 4 T - 66 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 - 16 T + 150 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.5367522933, −19.0306859253, −18.4229221956, −18.1239681892, −17.2233214186, −16.4906919493, −16.0660389417, −15.5670704383, −15.1407017115, −14.2634140717, −13.8801434825, −13.2547937413, −12.4368992852, −12.0935413783, −11.4038825068, −10.4911639385, −9.87809728127, −9.12028158071, −8.46244447903, −7.82828798573, −7.13674898544, −6.19695490302, −4.88551320983, −3.94175293048, −3.14748754461, 3.14748754461, 3.94175293048, 4.88551320983, 6.19695490302, 7.13674898544, 7.82828798573, 8.46244447903, 9.12028158071, 9.87809728127, 10.4911639385, 11.4038825068, 12.0935413783, 12.4368992852, 13.2547937413, 13.8801434825, 14.2634140717, 15.1407017115, 15.5670704383, 16.0660389417, 16.4906919493, 17.2233214186, 18.1239681892, 18.4229221956, 19.0306859253, 19.5367522933

Graph of the $Z$-function along the critical line