| L(s) = 1 | − 2·2-s − 4-s + 8·8-s − 4·11-s − 7·16-s + 8·22-s − 12·23-s + 6·25-s − 4·29-s − 14·32-s + 6·37-s − 2·43-s + 4·44-s + 24·46-s − 12·50-s + 12·53-s + 8·58-s + 35·64-s + 14·67-s − 12·74-s + 22·79-s + 4·86-s − 32·88-s + 12·92-s − 6·100-s − 24·106-s − 4·107-s + ⋯ |
| L(s) = 1 | − 1.41·2-s − 1/2·4-s + 2.82·8-s − 1.20·11-s − 7/4·16-s + 1.70·22-s − 2.50·23-s + 6/5·25-s − 0.742·29-s − 2.47·32-s + 0.986·37-s − 0.304·43-s + 0.603·44-s + 3.53·46-s − 1.69·50-s + 1.64·53-s + 1.05·58-s + 35/8·64-s + 1.71·67-s − 1.39·74-s + 2.47·79-s + 0.431·86-s − 3.41·88-s + 1.25·92-s − 3/5·100-s − 2.33·106-s − 0.386·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1750329 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1750329 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.3837233950\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3837233950\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.116653920015147863681030485165, −7.47906214811694943254418977697, −7.42647965860644167776315724949, −6.69301809340706125234074868915, −6.14623737900759535985097643782, −5.55497953150978441638676387304, −5.22174626816378645292658033645, −4.77492261402819605358514038878, −4.26459885949450872653953319987, −3.85297585812455508834915893838, −3.34295702159287177762130169073, −2.27467032412786158333398018626, −2.07336320253444604618926237883, −1.06074849095375840135977622104, −0.40116959550324554090187768272,
0.40116959550324554090187768272, 1.06074849095375840135977622104, 2.07336320253444604618926237883, 2.27467032412786158333398018626, 3.34295702159287177762130169073, 3.85297585812455508834915893838, 4.26459885949450872653953319987, 4.77492261402819605358514038878, 5.22174626816378645292658033645, 5.55497953150978441638676387304, 6.14623737900759535985097643782, 6.69301809340706125234074868915, 7.42647965860644167776315724949, 7.47906214811694943254418977697, 8.116653920015147863681030485165