| L(s) = 1 | + 2·2-s − 4-s − 8·8-s − 10·11-s − 7·16-s − 20·22-s − 2·23-s − 25-s + 4·29-s + 14·32-s + 6·37-s + 12·43-s + 10·44-s − 4·46-s − 2·50-s + 16·53-s + 8·58-s + 35·64-s − 28·67-s + 14·71-s + 12·74-s − 20·79-s + 24·86-s + 80·88-s + 2·92-s + 100-s + 32·106-s + ⋯ |
| L(s) = 1 | + 1.41·2-s − 1/2·4-s − 2.82·8-s − 3.01·11-s − 7/4·16-s − 4.26·22-s − 0.417·23-s − 1/5·25-s + 0.742·29-s + 2.47·32-s + 0.986·37-s + 1.82·43-s + 1.50·44-s − 0.589·46-s − 0.282·50-s + 2.19·53-s + 1.05·58-s + 35/8·64-s − 3.42·67-s + 1.66·71-s + 1.39·74-s − 2.25·79-s + 2.58·86-s + 8.52·88-s + 0.208·92-s + 1/10·100-s + 3.10·106-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1750329 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1750329 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.51628200491268451704050962091, −7.39691755528068449061259570564, −6.47884273436117871307974498700, −5.96466062289959274270681070046, −5.68667112029587934302581219019, −5.41389437444540368847999455753, −4.97324351018055834490293383395, −4.37690537415494649135748951679, −4.37621733692366770303800440112, −3.62230602066129289359790734359, −2.95504645610525949403863409430, −2.73512468913067121254189272250, −2.26481617188159673197543529003, −0.77022560857539424923599740084, 0,
0.77022560857539424923599740084, 2.26481617188159673197543529003, 2.73512468913067121254189272250, 2.95504645610525949403863409430, 3.62230602066129289359790734359, 4.37621733692366770303800440112, 4.37690537415494649135748951679, 4.97324351018055834490293383395, 5.41389437444540368847999455753, 5.68667112029587934302581219019, 5.96466062289959274270681070046, 6.47884273436117871307974498700, 7.39691755528068449061259570564, 7.51628200491268451704050962091