Properties

Label 4-1320e2-1.1-c1e2-0-75
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s − 2·11-s − 6·23-s − 5·25-s + 4·27-s − 4·31-s + 4·33-s − 18·37-s + 2·47-s − 12·49-s − 6·53-s − 16·59-s − 14·67-s + 12·69-s − 24·71-s + 10·75-s − 11·81-s − 4·89-s + 8·93-s + 10·97-s − 2·99-s − 2·103-s + 36·111-s + 6·113-s − 7·121-s + 127-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s − 0.603·11-s − 1.25·23-s − 25-s + 0.769·27-s − 0.718·31-s + 0.696·33-s − 2.95·37-s + 0.291·47-s − 1.71·49-s − 0.824·53-s − 2.08·59-s − 1.71·67-s + 1.44·69-s − 2.84·71-s + 1.15·75-s − 1.22·81-s − 0.423·89-s + 0.829·93-s + 1.01·97-s − 0.201·99-s − 0.197·103-s + 3.41·111-s + 0.564·113-s − 0.636·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
11$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 52 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 104 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 146 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36963711644089518142039272150, −6.97653088727263142756389606857, −6.37661064122731610749270783409, −6.04798848203660821052489182951, −5.72338911596447562569505218039, −5.32810490560116582990412818264, −4.70230174869687218784713714020, −4.56807903011406740199498793887, −3.76862795660492913201215671552, −3.28560629440378329367359919746, −2.78803787834219559133058057267, −1.77006532744428655728355255651, −1.60091467037784679419696293720, 0, 0, 1.60091467037784679419696293720, 1.77006532744428655728355255651, 2.78803787834219559133058057267, 3.28560629440378329367359919746, 3.76862795660492913201215671552, 4.56807903011406740199498793887, 4.70230174869687218784713714020, 5.32810490560116582990412818264, 5.72338911596447562569505218039, 6.04798848203660821052489182951, 6.37661064122731610749270783409, 6.97653088727263142756389606857, 7.36963711644089518142039272150

Graph of the $Z$-function along the critical line