L(s) = 1 | − 2·5-s − 3·9-s − 6·11-s − 2·23-s − 25-s − 8·31-s + 4·37-s + 6·45-s − 2·47-s − 6·49-s − 4·53-s + 12·55-s − 16·59-s + 10·67-s − 4·71-s + 9·81-s − 32·89-s − 12·97-s + 18·99-s − 22·103-s − 8·113-s + 4·115-s + 25·121-s + 12·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 9-s − 1.80·11-s − 0.417·23-s − 1/5·25-s − 1.43·31-s + 0.657·37-s + 0.894·45-s − 0.291·47-s − 6/7·49-s − 0.549·53-s + 1.61·55-s − 2.08·59-s + 1.22·67-s − 0.474·71-s + 81-s − 3.39·89-s − 1.21·97-s + 1.80·99-s − 2.16·103-s − 0.752·113-s + 0.373·115-s + 2.27·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 + p T^{2} \) |
| 5 | $C_2$ | \( 1 + 2 T + p T^{2} \) |
| 11 | $C_2$ | \( 1 + 6 T + p T^{2} \) |
good | 7 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 + 22 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 31 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 41 | $C_2^2$ | \( 1 + 62 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 61 | $C_2^2$ | \( 1 - 54 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 73 | $C_2^2$ | \( 1 - 46 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 - 82 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 - 118 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 + 14 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.55561792165873046892249850103, −7.03873627704813637710529845892, −6.64169781907365018817373971832, −5.88702464611100736350084465483, −5.72276631342559669032714444743, −5.24893401030617732541930582145, −4.79402043171229839137958987101, −4.25942274295961743306092145044, −3.75748241180888545766863124354, −3.15087845388939938579058698930, −2.80977651710451012517331584865, −2.25233541503405485349734417248, −1.44687228557168819842460073274, 0, 0,
1.44687228557168819842460073274, 2.25233541503405485349734417248, 2.80977651710451012517331584865, 3.15087845388939938579058698930, 3.75748241180888545766863124354, 4.25942274295961743306092145044, 4.79402043171229839137958987101, 5.24893401030617732541930582145, 5.72276631342559669032714444743, 5.88702464611100736350084465483, 6.64169781907365018817373971832, 7.03873627704813637710529845892, 7.55561792165873046892249850103