Properties

Label 4-1320e2-1.1-c1e2-0-74
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·9-s − 6·11-s − 2·23-s − 25-s − 8·31-s + 4·37-s + 6·45-s − 2·47-s − 6·49-s − 4·53-s + 12·55-s − 16·59-s + 10·67-s − 4·71-s + 9·81-s − 32·89-s − 12·97-s + 18·99-s − 22·103-s − 8·113-s + 4·115-s + 25·121-s + 12·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 0.894·5-s − 9-s − 1.80·11-s − 0.417·23-s − 1/5·25-s − 1.43·31-s + 0.657·37-s + 0.894·45-s − 0.291·47-s − 6/7·49-s − 0.549·53-s + 1.61·55-s − 2.08·59-s + 1.22·67-s − 0.474·71-s + 81-s − 3.39·89-s − 1.21·97-s + 1.80·99-s − 2.16·103-s − 0.752·113-s + 0.373·115-s + 2.27·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_2$ \( 1 + 6 T + p T^{2} \)
good7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 14 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55561792165873046892249850103, −7.03873627704813637710529845892, −6.64169781907365018817373971832, −5.88702464611100736350084465483, −5.72276631342559669032714444743, −5.24893401030617732541930582145, −4.79402043171229839137958987101, −4.25942274295961743306092145044, −3.75748241180888545766863124354, −3.15087845388939938579058698930, −2.80977651710451012517331584865, −2.25233541503405485349734417248, −1.44687228557168819842460073274, 0, 0, 1.44687228557168819842460073274, 2.25233541503405485349734417248, 2.80977651710451012517331584865, 3.15087845388939938579058698930, 3.75748241180888545766863124354, 4.25942274295961743306092145044, 4.79402043171229839137958987101, 5.24893401030617732541930582145, 5.72276631342559669032714444743, 5.88702464611100736350084465483, 6.64169781907365018817373971832, 7.03873627704813637710529845892, 7.55561792165873046892249850103

Graph of the $Z$-function along the critical line