Properties

Label 4-1320e2-1.1-c1e2-0-68
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s + 4·11-s − 4·23-s − 5·25-s − 4·27-s + 2·31-s + 8·33-s − 6·37-s − 10·47-s − 4·49-s − 8·53-s + 16·67-s − 8·69-s − 8·71-s − 10·75-s − 11·81-s − 2·89-s + 4·93-s − 22·97-s + 4·99-s − 8·103-s − 12·111-s + 20·113-s + 5·121-s + 127-s + 131-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s + 1.20·11-s − 0.834·23-s − 25-s − 0.769·27-s + 0.359·31-s + 1.39·33-s − 0.986·37-s − 1.45·47-s − 4/7·49-s − 1.09·53-s + 1.95·67-s − 0.963·69-s − 0.949·71-s − 1.15·75-s − 1.22·81-s − 0.211·89-s + 0.414·93-s − 2.23·97-s + 0.402·99-s − 0.788·103-s − 1.13·111-s + 1.88·113-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86735145256006128225680914884, −7.12677891119421151760402250886, −6.87192318854660231304818254218, −6.39905752530911314023527935340, −5.92898007255709140054382921533, −5.52146253379322057238372662992, −4.89089994467430196771545977685, −4.31817677098915716449378029039, −3.96392870128622868080360965231, −3.39484621967365686957833988089, −3.16857164585558976996154852725, −2.34262874507074568590808082837, −1.86687205836808265029991573209, −1.33036298878947812916571172751, 0, 1.33036298878947812916571172751, 1.86687205836808265029991573209, 2.34262874507074568590808082837, 3.16857164585558976996154852725, 3.39484621967365686957833988089, 3.96392870128622868080360965231, 4.31817677098915716449378029039, 4.89089994467430196771545977685, 5.52146253379322057238372662992, 5.92898007255709140054382921533, 6.39905752530911314023527935340, 6.87192318854660231304818254218, 7.12677891119421151760402250886, 7.86735145256006128225680914884

Graph of the $Z$-function along the critical line