Properties

Label 4-1320e2-1.1-c1e2-0-49
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s + 3·9-s − 4·11-s − 4·15-s − 25-s − 4·27-s + 8·31-s + 8·33-s − 8·37-s + 6·45-s + 8·47-s − 10·49-s − 8·55-s − 8·59-s + 16·67-s + 16·71-s + 2·75-s + 5·81-s − 12·89-s − 16·93-s − 8·97-s − 12·99-s − 16·103-s + 16·111-s + 5·121-s − 12·125-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s + 9-s − 1.20·11-s − 1.03·15-s − 1/5·25-s − 0.769·27-s + 1.43·31-s + 1.39·33-s − 1.31·37-s + 0.894·45-s + 1.16·47-s − 1.42·49-s − 1.07·55-s − 1.04·59-s + 1.95·67-s + 1.89·71-s + 0.230·75-s + 5/9·81-s − 1.27·89-s − 1.65·93-s − 0.812·97-s − 1.20·99-s − 1.57·103-s + 1.51·111-s + 5/11·121-s − 1.07·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69025104683743770288248087931, −6.95500393185725205052266230879, −6.63819944394242819970801103280, −6.41980735036273450707953614266, −5.71315663517628644209063759209, −5.46178499553655492242425903961, −5.21799236645758284504968433033, −4.64216429710905580371490438601, −4.22151360539406005628136168315, −3.52843044714614841013517855455, −2.88975798908926859047599254946, −2.31202893635492901792209170029, −1.75767150129315085093445866929, −0.961636599906691470410823677791, 0, 0.961636599906691470410823677791, 1.75767150129315085093445866929, 2.31202893635492901792209170029, 2.88975798908926859047599254946, 3.52843044714614841013517855455, 4.22151360539406005628136168315, 4.64216429710905580371490438601, 5.21799236645758284504968433033, 5.46178499553655492242425903961, 5.71315663517628644209063759209, 6.41980735036273450707953614266, 6.63819944394242819970801103280, 6.95500393185725205052266230879, 7.69025104683743770288248087931

Graph of the $Z$-function along the critical line