Properties

Label 4-1320e2-1.1-c1e2-0-44
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s + 6·11-s − 6·23-s − 5·25-s + 4·27-s − 12·31-s − 12·33-s − 2·37-s − 6·47-s + 4·49-s + 10·53-s + 2·67-s + 12·69-s − 8·71-s + 10·75-s − 11·81-s + 12·89-s + 24·93-s + 10·97-s + 6·99-s + 14·103-s + 4·111-s + 6·113-s + 25·121-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s + 1.80·11-s − 1.25·23-s − 25-s + 0.769·27-s − 2.15·31-s − 2.08·33-s − 0.328·37-s − 0.875·47-s + 4/7·49-s + 1.37·53-s + 0.244·67-s + 1.44·69-s − 0.949·71-s + 1.15·75-s − 1.22·81-s + 1.27·89-s + 2.48·93-s + 1.01·97-s + 0.603·99-s + 1.37·103-s + 0.379·111-s + 0.564·113-s + 2.27·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
11$C_2$ \( 1 - 6 T + p T^{2} \)
good7$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 112 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49210921191165194472594932445, −7.12859845530563254699686520903, −6.65449099208137376164286734092, −6.22759636719316512583037272183, −5.95749317697336908036998733640, −5.55182413151554932972084917920, −5.10085686126061416213536097625, −4.51535719774097932989144740548, −3.96201925891767710949017599817, −3.75083750582528864509509848682, −3.15271572467732655737810953170, −2.10532992933991790258524786101, −1.77955326635699234160861318624, −0.928139248007531457766375284407, 0, 0.928139248007531457766375284407, 1.77955326635699234160861318624, 2.10532992933991790258524786101, 3.15271572467732655737810953170, 3.75083750582528864509509848682, 3.96201925891767710949017599817, 4.51535719774097932989144740548, 5.10085686126061416213536097625, 5.55182413151554932972084917920, 5.95749317697336908036998733640, 6.22759636719316512583037272183, 6.65449099208137376164286734092, 7.12859845530563254699686520903, 7.49210921191165194472594932445

Graph of the $Z$-function along the critical line