L(s) = 1 | − 3·9-s − 4·11-s − 4·23-s − 5·25-s + 8·31-s + 2·37-s + 16·47-s − 4·49-s + 2·53-s − 16·59-s + 24·71-s + 9·81-s − 4·89-s + 14·97-s + 12·99-s − 20·103-s + 10·113-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 9-s − 1.20·11-s − 0.834·23-s − 25-s + 1.43·31-s + 0.328·37-s + 2.33·47-s − 4/7·49-s + 0.274·53-s − 2.08·59-s + 2.84·71-s + 81-s − 0.423·89-s + 1.42·97-s + 1.20·99-s − 1.97·103-s + 0.940·113-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 + p T^{2} \) |
| 5 | $C_2$ | \( 1 + p T^{2} \) |
| 11 | $C_2$ | \( 1 + 4 T + p T^{2} \) |
good | 7 | $C_2^2$ | \( 1 + 4 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 + 16 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 - 4 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 29 | $C_2^2$ | \( 1 + 38 T^{2} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 + 62 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2^2$ | \( 1 - 4 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 61 | $C_2^2$ | \( 1 + 10 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 73 | $C_2^2$ | \( 1 + 136 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 - 82 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 + 104 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 - 18 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.64611228004654785814171598634, −7.36968535616115089406693358190, −6.69213209566948048949931887270, −6.18580402624053609971725399395, −5.92975143034667224219501844146, −5.50629150984198139022927418421, −5.02024383005253165167270267617, −4.57327149432521949753218540734, −4.01344895246868713980299873749, −3.48767130285265398797263832982, −2.87852836920277577282721178952, −2.43944723751219250765197210193, −1.99854118122705962662535623445, −0.893126392700073903532681975082, 0,
0.893126392700073903532681975082, 1.99854118122705962662535623445, 2.43944723751219250765197210193, 2.87852836920277577282721178952, 3.48767130285265398797263832982, 4.01344895246868713980299873749, 4.57327149432521949753218540734, 5.02024383005253165167270267617, 5.50629150984198139022927418421, 5.92975143034667224219501844146, 6.18580402624053609971725399395, 6.69213209566948048949931887270, 7.36968535616115089406693358190, 7.64611228004654785814171598634