Properties

Label 4-1320e2-1.1-c1e2-0-43
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 4·11-s − 4·23-s − 5·25-s + 8·31-s + 2·37-s + 16·47-s − 4·49-s + 2·53-s − 16·59-s + 24·71-s + 9·81-s − 4·89-s + 14·97-s + 12·99-s − 20·103-s + 10·113-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 9-s − 1.20·11-s − 0.834·23-s − 25-s + 1.43·31-s + 0.328·37-s + 2.33·47-s − 4/7·49-s + 0.274·53-s − 2.08·59-s + 2.84·71-s + 81-s − 0.423·89-s + 1.42·97-s + 1.20·99-s − 1.97·103-s + 0.940·113-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 136 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 104 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64611228004654785814171598634, −7.36968535616115089406693358190, −6.69213209566948048949931887270, −6.18580402624053609971725399395, −5.92975143034667224219501844146, −5.50629150984198139022927418421, −5.02024383005253165167270267617, −4.57327149432521949753218540734, −4.01344895246868713980299873749, −3.48767130285265398797263832982, −2.87852836920277577282721178952, −2.43944723751219250765197210193, −1.99854118122705962662535623445, −0.893126392700073903532681975082, 0, 0.893126392700073903532681975082, 1.99854118122705962662535623445, 2.43944723751219250765197210193, 2.87852836920277577282721178952, 3.48767130285265398797263832982, 4.01344895246868713980299873749, 4.57327149432521949753218540734, 5.02024383005253165167270267617, 5.50629150984198139022927418421, 5.92975143034667224219501844146, 6.18580402624053609971725399395, 6.69213209566948048949931887270, 7.36968535616115089406693358190, 7.64611228004654785814171598634

Graph of the $Z$-function along the critical line