Properties

Label 4-1320e2-1.1-c1e2-0-40
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s + 2·6-s + 3·8-s + 3·9-s + 2·11-s + 2·12-s − 16-s − 2·17-s − 3·18-s + 6·19-s − 2·22-s − 6·24-s − 25-s − 4·27-s − 5·32-s − 4·33-s + 2·34-s − 3·36-s − 6·38-s − 14·41-s − 8·43-s − 2·44-s + 2·48-s + 2·49-s + 50-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.816·6-s + 1.06·8-s + 9-s + 0.603·11-s + 0.577·12-s − 1/4·16-s − 0.485·17-s − 0.707·18-s + 1.37·19-s − 0.426·22-s − 1.22·24-s − 1/5·25-s − 0.769·27-s − 0.883·32-s − 0.696·33-s + 0.342·34-s − 1/2·36-s − 0.973·38-s − 2.18·41-s − 1.21·43-s − 0.301·44-s + 0.288·48-s + 2/7·49-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_2$ \( 1 + T^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57058203818253197281768482198, −7.14208530046753208660020336733, −6.83530621471581364316344386979, −6.41005176080163568306446978225, −5.89443824717980479468779817353, −5.33659505692247112288538356386, −5.06051045154217671059803900195, −4.66242347146520972871041054491, −4.13072360398225293655004443930, −3.55729432869759313679055657725, −3.15511793561358484234928143704, −2.03483153664458381321364283439, −1.52790826194540348581362128578, −0.860409627779462174358550875201, 0, 0.860409627779462174358550875201, 1.52790826194540348581362128578, 2.03483153664458381321364283439, 3.15511793561358484234928143704, 3.55729432869759313679055657725, 4.13072360398225293655004443930, 4.66242347146520972871041054491, 5.06051045154217671059803900195, 5.33659505692247112288538356386, 5.89443824717980479468779817353, 6.41005176080163568306446978225, 6.83530621471581364316344386979, 7.14208530046753208660020336733, 7.57058203818253197281768482198

Graph of the $Z$-function along the critical line