Properties

Label 4-1320e2-1.1-c1e2-0-39
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 2·9-s + 2·11-s + 3·15-s + 4·23-s + 4·25-s + 5·27-s + 5·31-s − 2·33-s + 6·37-s + 6·45-s + 4·47-s − 10·49-s + 5·53-s − 6·55-s − 6·59-s − 23·67-s − 4·69-s − 7·71-s − 4·75-s + 81-s − 13·89-s − 5·93-s − 4·97-s − 4·99-s + 19·103-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 2/3·9-s + 0.603·11-s + 0.774·15-s + 0.834·23-s + 4/5·25-s + 0.962·27-s + 0.898·31-s − 0.348·33-s + 0.986·37-s + 0.894·45-s + 0.583·47-s − 1.42·49-s + 0.686·53-s − 0.809·55-s − 0.781·59-s − 2.80·67-s − 0.481·69-s − 0.830·71-s − 0.461·75-s + 1/9·81-s − 1.37·89-s − 0.518·93-s − 0.406·97-s − 0.402·99-s + 1.87·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T + p T^{2} \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
11$C_2$ \( 1 - 2 T + p T^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
41$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 73 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 69 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 114 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 121 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69523355267074010579353379643, −7.15288637724728766910966645651, −6.84075322671062874923353429951, −6.21380074708463504538051723697, −6.03073759342737771610754526197, −5.47490891283532515893036163992, −4.82364209015431528910892167058, −4.54753896713290821254528397175, −4.13814620487421848486060053197, −3.51557774992649243759247430532, −2.99769703021923011838172046712, −2.66549272167519540435260765387, −1.57992977830527588285747630766, −0.854292478382882462353343449317, 0, 0.854292478382882462353343449317, 1.57992977830527588285747630766, 2.66549272167519540435260765387, 2.99769703021923011838172046712, 3.51557774992649243759247430532, 4.13814620487421848486060053197, 4.54753896713290821254528397175, 4.82364209015431528910892167058, 5.47490891283532515893036163992, 6.03073759342737771610754526197, 6.21380074708463504538051723697, 6.84075322671062874923353429951, 7.15288637724728766910966645651, 7.69523355267074010579353379643

Graph of the $Z$-function along the critical line