Properties

Label 4-1320e2-1.1-c1e2-0-38
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·9-s + 15-s − 4·25-s + 5·27-s + 7·31-s − 10·37-s + 2·45-s − 12·49-s + 5·53-s + 23·67-s − 5·71-s + 4·75-s + 81-s − 15·89-s − 7·93-s + 2·97-s + 7·103-s + 10·111-s − 11·121-s + 9·125-s + 127-s + 131-s − 5·135-s + 137-s + 139-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 2/3·9-s + 0.258·15-s − 4/5·25-s + 0.962·27-s + 1.25·31-s − 1.64·37-s + 0.298·45-s − 1.71·49-s + 0.686·53-s + 2.80·67-s − 0.593·71-s + 0.461·75-s + 1/9·81-s − 1.58·89-s − 0.725·93-s + 0.203·97-s + 0.689·103-s + 0.949·111-s − 121-s + 0.804·125-s + 0.0887·127-s + 0.0873·131-s − 0.430·135-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T + p T^{2} \)
5$C_2$ \( 1 + T + p T^{2} \)
11$C_2$ \( 1 + p T^{2} \)
good7$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 107 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 45 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 76 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67520839942905594114393746180, −7.04090172477884231390057022946, −6.76283727981711591414679478413, −6.37587706260337186325792624655, −5.85018165883120491676880071524, −5.41545148154031037180685890793, −5.10825549579191978930338108425, −4.51229760191079839160566714753, −4.11773678721840727067461631834, −3.41665505325270525353388505640, −3.13779755099539190022857411522, −2.39111425625291131729749674026, −1.78525573442604492698123330272, −0.852582563367677790063020673065, 0, 0.852582563367677790063020673065, 1.78525573442604492698123330272, 2.39111425625291131729749674026, 3.13779755099539190022857411522, 3.41665505325270525353388505640, 4.11773678721840727067461631834, 4.51229760191079839160566714753, 5.10825549579191978930338108425, 5.41545148154031037180685890793, 5.85018165883120491676880071524, 6.37587706260337186325792624655, 6.76283727981711591414679478413, 7.04090172477884231390057022946, 7.67520839942905594114393746180

Graph of the $Z$-function along the critical line