Properties

Label 4-1320e2-1.1-c1e2-0-37
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·5-s + 9-s − 2·11-s + 8·15-s − 6·23-s + 11·25-s − 4·27-s + 8·31-s − 4·33-s + 10·37-s + 4·45-s + 14·47-s − 8·49-s + 10·53-s − 8·55-s − 8·59-s − 6·67-s − 12·69-s + 22·75-s − 11·81-s − 8·89-s + 16·93-s − 2·97-s − 2·99-s + 22·103-s + 20·111-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.78·5-s + 1/3·9-s − 0.603·11-s + 2.06·15-s − 1.25·23-s + 11/5·25-s − 0.769·27-s + 1.43·31-s − 0.696·33-s + 1.64·37-s + 0.596·45-s + 2.04·47-s − 8/7·49-s + 1.37·53-s − 1.07·55-s − 1.04·59-s − 0.733·67-s − 1.44·69-s + 2.54·75-s − 1.22·81-s − 0.847·89-s + 1.65·93-s − 0.203·97-s − 0.201·99-s + 2.16·103-s + 1.89·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.796929978\)
\(L(\frac12)\) \(\approx\) \(4.796929978\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
11$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 64 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.924257655855120773305509929217, −7.42602765568931877048731087278, −7.12610748186048586045884501761, −6.30431627502033767043419320477, −6.13022401632081364784206307219, −5.80218627605285542021994564539, −5.31578539968126551630699352938, −4.68888908475451977275407249765, −4.31232447967445935611600013234, −3.68760949928064187239591030843, −2.87281288029498066309348348619, −2.75390450274884111166400695119, −2.16597278581643182553002586458, −1.76083348668812613572221562979, −0.845344039240915771652762144061, 0.845344039240915771652762144061, 1.76083348668812613572221562979, 2.16597278581643182553002586458, 2.75390450274884111166400695119, 2.87281288029498066309348348619, 3.68760949928064187239591030843, 4.31232447967445935611600013234, 4.68888908475451977275407249765, 5.31578539968126551630699352938, 5.80218627605285542021994564539, 6.13022401632081364784206307219, 6.30431627502033767043419320477, 7.12610748186048586045884501761, 7.42602765568931877048731087278, 7.924257655855120773305509929217

Graph of the $Z$-function along the critical line