Properties

Label 4-1320e2-1.1-c1e2-0-34
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s − 4·11-s + 4·23-s + 25-s + 4·27-s − 8·31-s + 8·33-s − 12·37-s − 12·47-s − 2·49-s + 16·53-s + 16·67-s − 8·69-s − 8·71-s − 2·75-s − 11·81-s + 32·89-s + 16·93-s − 20·97-s − 4·99-s + 8·103-s + 24·111-s + 16·113-s + 5·121-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s − 1.20·11-s + 0.834·23-s + 1/5·25-s + 0.769·27-s − 1.43·31-s + 1.39·33-s − 1.97·37-s − 1.75·47-s − 2/7·49-s + 2.19·53-s + 1.95·67-s − 0.963·69-s − 0.949·71-s − 0.230·75-s − 1.22·81-s + 3.39·89-s + 1.65·93-s − 2.03·97-s − 0.402·99-s + 0.788·103-s + 2.27·111-s + 1.50·113-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 - 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.39872810031446104192797451649, −7.20699802287065575414472274264, −6.72668855065703536697699281084, −6.34231669840788912751245696184, −5.76008893389257096172329418778, −5.39340902188167415120250144953, −5.03386791287269834941254017126, −4.87891644486255913534883180248, −4.06964714631677540955167342584, −3.46149936145071072320863582123, −3.08896901022385549874361602073, −2.31789727479022948817187074178, −1.77050652143092979040469435264, −0.796544918596229829390449759573, 0, 0.796544918596229829390449759573, 1.77050652143092979040469435264, 2.31789727479022948817187074178, 3.08896901022385549874361602073, 3.46149936145071072320863582123, 4.06964714631677540955167342584, 4.87891644486255913534883180248, 5.03386791287269834941254017126, 5.39340902188167415120250144953, 5.76008893389257096172329418778, 6.34231669840788912751245696184, 6.72668855065703536697699281084, 7.20699802287065575414472274264, 7.39872810031446104192797451649

Graph of the $Z$-function along the critical line