Properties

Label 4-1320e2-1.1-c1e2-0-33
Degree $4$
Conductor $1742400$
Sign $-1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·5-s + 9-s + 2·11-s + 8·15-s + 6·23-s + 11·25-s + 4·27-s − 8·31-s − 4·33-s + 2·37-s − 4·45-s + 2·47-s + 8·49-s − 14·53-s − 8·55-s − 8·59-s + 14·67-s − 12·69-s − 22·75-s − 11·81-s + 8·89-s + 16·93-s − 18·97-s + 2·99-s + 10·103-s − 4·111-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.78·5-s + 1/3·9-s + 0.603·11-s + 2.06·15-s + 1.25·23-s + 11/5·25-s + 0.769·27-s − 1.43·31-s − 0.696·33-s + 0.328·37-s − 0.596·45-s + 0.291·47-s + 8/7·49-s − 1.92·53-s − 1.07·55-s − 1.04·59-s + 1.71·67-s − 1.44·69-s − 2.54·75-s − 1.22·81-s + 0.847·89-s + 1.65·93-s − 1.82·97-s + 0.201·99-s + 0.985·103-s − 0.379·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
11$C_2$ \( 1 - 2 T + p T^{2} \)
good7$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 64 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 24 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.56872923108689049659304407235, −7.11887939596365119714029630413, −6.82417552681278509891696815650, −6.40406600892807193601190711266, −5.90916864692261659322807695472, −5.33889353061379062549921581920, −4.98760820845825421991059883086, −4.55861072129707426547924929395, −4.06610872348860958992456877447, −3.61627325378515210550297540208, −3.16500415333424153504767225991, −2.53515393119178065883940835809, −1.46622120430306728422962260467, −0.78440829048920899994600374863, 0, 0.78440829048920899994600374863, 1.46622120430306728422962260467, 2.53515393119178065883940835809, 3.16500415333424153504767225991, 3.61627325378515210550297540208, 4.06610872348860958992456877447, 4.55861072129707426547924929395, 4.98760820845825421991059883086, 5.33889353061379062549921581920, 5.90916864692261659322807695472, 6.40406600892807193601190711266, 6.82417552681278509891696815650, 7.11887939596365119714029630413, 7.56872923108689049659304407235

Graph of the $Z$-function along the critical line