Properties

Label 4-1320e2-1.1-c1e2-0-3
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·4-s + 3·9-s + 4·12-s + 4·16-s − 25-s − 4·27-s − 6·36-s − 8·48-s − 14·49-s + 24·59-s − 8·64-s − 8·67-s + 2·75-s + 5·81-s − 12·89-s + 20·97-s + 2·100-s + 8·108-s − 24·113-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 12·144-s + 28·147-s + ⋯
L(s)  = 1  − 1.15·3-s − 4-s + 9-s + 1.15·12-s + 16-s − 1/5·25-s − 0.769·27-s − 36-s − 1.15·48-s − 2·49-s + 3.12·59-s − 64-s − 0.977·67-s + 0.230·75-s + 5/9·81-s − 1.27·89-s + 2.03·97-s + 1/5·100-s + 0.769·108-s − 2.25·113-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 144-s + 2.30·147-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6913518051\)
\(L(\frac12)\) \(\approx\) \(0.6913518051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_2$ \( 1 + T^{2} \)
11$C_2$ \( 1 + p T^{2} \)
good7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83325755408735693600071609695, −7.38541850339832998668268026589, −6.85155955042050463476230970468, −6.55439729290212311710146682030, −5.98035480045830507258967618424, −5.62024413796275960251022461755, −5.22535109283974198483551331908, −4.82313147209422087876176340175, −4.38225399232848593248386531452, −3.90280943155393742937099473009, −3.45538269235705626226908879048, −2.76006018578094074868045772964, −1.90633709484756923093390365472, −1.20653669249532522481654849889, −0.42769987983447823604368006289, 0.42769987983447823604368006289, 1.20653669249532522481654849889, 1.90633709484756923093390365472, 2.76006018578094074868045772964, 3.45538269235705626226908879048, 3.90280943155393742937099473009, 4.38225399232848593248386531452, 4.82313147209422087876176340175, 5.22535109283974198483551331908, 5.62024413796275960251022461755, 5.98035480045830507258967618424, 6.55439729290212311710146682030, 6.85155955042050463476230970468, 7.38541850339832998668268026589, 7.83325755408735693600071609695

Graph of the $Z$-function along the critical line