Properties

Label 4-1320e2-1.1-c1e2-0-26
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·4-s + 3·9-s + 4·11-s − 4·12-s + 4·16-s − 25-s + 4·27-s + 8·33-s − 6·36-s − 8·44-s + 8·48-s + 2·49-s − 8·64-s − 24·67-s − 2·75-s + 5·81-s + 36·89-s − 12·97-s + 12·99-s + 2·100-s − 8·108-s + 40·113-s + 5·121-s + 127-s + 131-s − 16·132-s + ⋯
L(s)  = 1  + 1.15·3-s − 4-s + 9-s + 1.20·11-s − 1.15·12-s + 16-s − 1/5·25-s + 0.769·27-s + 1.39·33-s − 36-s − 1.20·44-s + 1.15·48-s + 2/7·49-s − 64-s − 2.93·67-s − 0.230·75-s + 5/9·81-s + 3.81·89-s − 1.21·97-s + 1.20·99-s + 1/5·100-s − 0.769·108-s + 3.76·113-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s − 1.39·132-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.892053712\)
\(L(\frac12)\) \(\approx\) \(2.892053712\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_1$ \( ( 1 - T )^{2} \)
5$C_2$ \( 1 + T^{2} \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84827961715754951752886350141, −7.51875045662908302258190956769, −7.14980229847129127826501367896, −6.59265767107047167233713476495, −5.99616205503025469967131729422, −5.84951605841469556612501389502, −4.91339966523594470623691819225, −4.72204986262732601685458547473, −4.16385667926008803975079821293, −3.76863376874053685204202080797, −3.32920623052555176936881564356, −2.87658926350535126986714154002, −2.03328328654721857992838173783, −1.51446755334393166320992157436, −0.70739405725806165743557681185, 0.70739405725806165743557681185, 1.51446755334393166320992157436, 2.03328328654721857992838173783, 2.87658926350535126986714154002, 3.32920623052555176936881564356, 3.76863376874053685204202080797, 4.16385667926008803975079821293, 4.72204986262732601685458547473, 4.91339966523594470623691819225, 5.84951605841469556612501389502, 5.99616205503025469967131729422, 6.59265767107047167233713476495, 7.14980229847129127826501367896, 7.51875045662908302258190956769, 7.84827961715754951752886350141

Graph of the $Z$-function along the critical line