L(s) = 1 | + 9-s + 4·11-s + 12·23-s − 5·25-s − 8·31-s + 8·37-s − 4·47-s + 2·49-s − 12·53-s − 8·59-s + 8·67-s + 81-s − 4·89-s + 4·99-s − 16·103-s + 32·113-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 1.20·11-s + 2.50·23-s − 25-s − 1.43·31-s + 1.31·37-s − 0.583·47-s + 2/7·49-s − 1.64·53-s − 1.04·59-s + 0.977·67-s + 1/9·81-s − 0.423·89-s + 0.402·99-s − 1.57·103-s + 3.01·113-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.461·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.471661766\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.471661766\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 5 | $C_2$ | \( 1 + p T^{2} \) |
| 11 | $C_2$ | \( 1 - 4 T + p T^{2} \) |
good | 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 13 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 - 14 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 29 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 - 50 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2^2$ | \( 1 - 38 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 61 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 79 | $C_2^2$ | \( 1 + 18 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 + 90 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.80711419734472445606527573656, −7.39201706535514080074495072644, −6.89221133311315411345444294109, −6.64742710579649270445859200752, −6.20132354215380848064956998560, −5.61493049729921820448950283262, −5.28728879340539078209249129798, −4.61875004607974277056945959255, −4.35660002463014366184565468741, −3.76009068539882033550922643620, −3.24618372121392982790115289577, −2.85059533542806615942607562485, −1.92604620230510087989583412894, −1.48457775831517464251624186976, −0.69409703839813883400571731118,
0.69409703839813883400571731118, 1.48457775831517464251624186976, 1.92604620230510087989583412894, 2.85059533542806615942607562485, 3.24618372121392982790115289577, 3.76009068539882033550922643620, 4.35660002463014366184565468741, 4.61875004607974277056945959255, 5.28728879340539078209249129798, 5.61493049729921820448950283262, 6.20132354215380848064956998560, 6.64742710579649270445859200752, 6.89221133311315411345444294109, 7.39201706535514080074495072644, 7.80711419734472445606527573656