L(s) = 1 | + 2·3-s + 9-s + 25-s − 4·27-s − 8·31-s + 4·37-s + 14·49-s + 4·67-s + 2·75-s − 11·81-s − 16·93-s + 12·97-s + 20·103-s + 8·111-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 28·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/3·9-s + 1/5·25-s − 0.769·27-s − 1.43·31-s + 0.657·37-s + 2·49-s + 0.488·67-s + 0.230·75-s − 1.22·81-s − 1.65·93-s + 1.21·97-s + 1.97·103-s + 0.759·111-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.30·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.966289441\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.966289441\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 - 2 T + p T^{2} \) |
| 5 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 11 | $C_2$ | \( 1 + p T^{2} \) |
good | 7 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 13 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 43 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 61 | $C_2^2$ | \( 1 - 58 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 73 | $C_2^2$ | \( 1 - 46 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 - 142 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.75197278824446836724400774808, −7.57948140264670784314194613620, −7.08812354184454063381676246125, −6.68488485279941590828132149470, −6.03697142831367806514392321342, −5.71245213204504459346593525928, −5.23578976210512035214022342645, −4.67759523515741405871114059272, −4.08416441128044144578734329007, −3.73679987468418350246022378408, −3.23902286221771980070320165960, −2.68776385222180273392446907796, −2.19849838887539978221398799328, −1.66138322000050801695441677185, −0.65962765117881729274580570869,
0.65962765117881729274580570869, 1.66138322000050801695441677185, 2.19849838887539978221398799328, 2.68776385222180273392446907796, 3.23902286221771980070320165960, 3.73679987468418350246022378408, 4.08416441128044144578734329007, 4.67759523515741405871114059272, 5.23578976210512035214022342645, 5.71245213204504459346593525928, 6.03697142831367806514392321342, 6.68488485279941590828132149470, 7.08812354184454063381676246125, 7.57948140264670784314194613620, 7.75197278824446836724400774808