Properties

Label 4-1320e2-1.1-c1e2-0-21
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 9-s + 4·11-s − 25-s + 8·31-s + 8·37-s − 2·45-s − 16·47-s − 2·49-s + 24·53-s − 8·55-s − 8·59-s + 16·67-s + 16·71-s + 81-s − 20·89-s − 16·97-s + 4·99-s + 8·103-s + 8·113-s + 5·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  − 0.894·5-s + 1/3·9-s + 1.20·11-s − 1/5·25-s + 1.43·31-s + 1.31·37-s − 0.298·45-s − 2.33·47-s − 2/7·49-s + 3.29·53-s − 1.07·55-s − 1.04·59-s + 1.95·67-s + 1.89·71-s + 1/9·81-s − 2.11·89-s − 1.62·97-s + 0.402·99-s + 0.788·103-s + 0.752·113-s + 5/11·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.988972255\)
\(L(\frac12)\) \(\approx\) \(1.988972255\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.026404297766136895662512055972, −7.25624151390069608510211286773, −7.03266227275545160492653105318, −6.62211565498966079669618967734, −6.20333685780982384479221491754, −5.73263529762399736386921427177, −5.14057785936848501579779029287, −4.60473178973771251911928934463, −4.23353884561558632655177150743, −3.81912715817204232545956328387, −3.41819111991102427617959030821, −2.72910793845063097667579181890, −2.11649935913762436171788765859, −1.30299406909277296839825968826, −0.65276342797331901274662808003, 0.65276342797331901274662808003, 1.30299406909277296839825968826, 2.11649935913762436171788765859, 2.72910793845063097667579181890, 3.41819111991102427617959030821, 3.81912715817204232545956328387, 4.23353884561558632655177150743, 4.60473178973771251911928934463, 5.14057785936848501579779029287, 5.73263529762399736386921427177, 6.20333685780982384479221491754, 6.62211565498966079669618967734, 7.03266227275545160492653105318, 7.25624151390069608510211286773, 8.026404297766136895662512055972

Graph of the $Z$-function along the critical line