Properties

Label 4-1320e2-1.1-c1e2-0-18
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s + 3·9-s + 4·11-s − 4·15-s + 3·25-s − 4·27-s − 8·33-s − 4·37-s + 6·45-s + 2·49-s − 4·53-s + 8·55-s + 8·59-s + 8·67-s − 16·71-s − 6·75-s + 5·81-s + 4·89-s − 12·97-s + 12·99-s + 16·103-s + 8·111-s − 28·113-s + 5·121-s + 4·125-s + 127-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s + 9-s + 1.20·11-s − 1.03·15-s + 3/5·25-s − 0.769·27-s − 1.39·33-s − 0.657·37-s + 0.894·45-s + 2/7·49-s − 0.549·53-s + 1.07·55-s + 1.04·59-s + 0.977·67-s − 1.89·71-s − 0.692·75-s + 5/9·81-s + 0.423·89-s − 1.21·97-s + 1.20·99-s + 1.57·103-s + 0.759·111-s − 2.63·113-s + 5/11·121-s + 0.357·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.787139631\)
\(L(\frac12)\) \(\approx\) \(1.787139631\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69772309123989108220606203680, −7.24286157616606608479018143502, −6.78551843031724643856071699061, −6.49741853669412748069238506316, −6.17597213369972722055652239886, −5.64747469702184415761761201344, −5.31182846678436450493419044437, −4.93163920411726928209504798837, −4.22136173162431401656857580472, −4.01790463702023132038220328928, −3.28401677559658237098373233655, −2.64729285031370884332041299776, −1.83312502448824348368144578655, −1.44894769090136273852843086875, −0.63268977118096701538118248868, 0.63268977118096701538118248868, 1.44894769090136273852843086875, 1.83312502448824348368144578655, 2.64729285031370884332041299776, 3.28401677559658237098373233655, 4.01790463702023132038220328928, 4.22136173162431401656857580472, 4.93163920411726928209504798837, 5.31182846678436450493419044437, 5.64747469702184415761761201344, 6.17597213369972722055652239886, 6.49741853669412748069238506316, 6.78551843031724643856071699061, 7.24286157616606608479018143502, 7.69772309123989108220606203680

Graph of the $Z$-function along the critical line