Properties

Label 4-1320e2-1.1-c1e2-0-14
Degree $4$
Conductor $1742400$
Sign $1$
Analytic cond. $111.096$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 6·11-s + 6·23-s − 5·25-s − 4·27-s + 12·31-s − 12·33-s + 14·37-s − 10·47-s − 4·49-s + 2·53-s + 6·67-s + 12·69-s − 8·71-s − 10·75-s − 11·81-s − 12·89-s + 24·93-s + 18·97-s − 6·99-s + 2·103-s + 28·111-s − 10·113-s + 25·121-s + 127-s + 131-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s − 1.80·11-s + 1.25·23-s − 25-s − 0.769·27-s + 2.15·31-s − 2.08·33-s + 2.30·37-s − 1.45·47-s − 4/7·49-s + 0.274·53-s + 0.733·67-s + 1.44·69-s − 0.949·71-s − 1.15·75-s − 1.22·81-s − 1.27·89-s + 2.48·93-s + 1.82·97-s − 0.603·99-s + 0.197·103-s + 2.65·111-s − 0.940·113-s + 2.27·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1742400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1742400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(111.096\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1742400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.521578241\)
\(L(\frac12)\) \(\approx\) \(2.521578241\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
11$C_2$ \( 1 + 6 T + p T^{2} \)
good7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 24 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 112 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.907444021284946561777834717018, −7.67510306157285013697580309036, −7.08532848854378419687884107365, −6.62553837034146544342954668647, −6.05317531474568250854484221588, −5.71017817439842274703684319549, −5.16290119808022107284196815870, −4.59973172753640026312431303249, −4.41323085135148745141414380148, −3.57239682091301333666568069668, −3.10178535386571411619341760327, −2.65678826184174185856159063562, −2.42816523499942208017604098067, −1.59587711328906638623066423622, −0.60370707306457278843549771030, 0.60370707306457278843549771030, 1.59587711328906638623066423622, 2.42816523499942208017604098067, 2.65678826184174185856159063562, 3.10178535386571411619341760327, 3.57239682091301333666568069668, 4.41323085135148745141414380148, 4.59973172753640026312431303249, 5.16290119808022107284196815870, 5.71017817439842274703684319549, 6.05317531474568250854484221588, 6.62553837034146544342954668647, 7.08532848854378419687884107365, 7.67510306157285013697580309036, 7.907444021284946561777834717018

Graph of the $Z$-function along the critical line